Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998001432> ?p ?o ?g. }
- W2998001432 endingPage "1225" @default.
- W2998001432 startingPage "1217" @default.
- W2998001432 abstract "Rationale and Objectives To investigate the value of radiomics method based on the fat-suppressed T2 sequence for preoperative predicting axillary lymph node (ALN) metastasis in breast carcinoma. Materials and Methods The data of 329 invasive breast cancer patients were divided into the primary cohort (n = 269) and validation cohort (n = 60). Radiomics features were extracted from the fat-suppressed T2-weighted images on breast MRI, and ALN metastasis-related radiomics feature selection was performed using Mann-Whitney U-test and support vector machines with recursive feature elimination; then a radiomics signature was constructed by linear support vector machine. The predictive models were constructed using a linear regression model based on the clinicopathologic factors and radiomics signature, and nomogram was used for a visual prediction of the combined model. The predictive performances are evaluated with the sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve. Results A total of 647 radiomics features were extracted from each patient. About 23 ALN metastasis-related radiomics features were selected to construct the radiomics signature, including 17 texture features, 5 first-order statistical features, and one shape feature; patient age, tumor size, HER2 status, and vascular cancer thrombus accompanied or not were selected to construct the cilinicopathologic feature model. The sensitivity, specificity, accuracy, and are under the curve value of radiomics signature, clinicopathologic feature model, and the nomogram were 65.22%, 81.08%, 75.00%, and 0.819 (95% confidence interval [CI]: 0.776–0.861), 30.44%, 81.08%, 61.67%, and 0.605 (95% CI: 0.571–0.624) and 60.87%, 89.19%, 78.33%, and 0.810 (95% CI: 0.761–0.855), respectively. Conclusion Radiomics methods based on the fat-suppressed T2 sequence and the nomogram are helpful for preoperative accurate predicting ALN metastasis. To investigate the value of radiomics method based on the fat-suppressed T2 sequence for preoperative predicting axillary lymph node (ALN) metastasis in breast carcinoma. The data of 329 invasive breast cancer patients were divided into the primary cohort (n = 269) and validation cohort (n = 60). Radiomics features were extracted from the fat-suppressed T2-weighted images on breast MRI, and ALN metastasis-related radiomics feature selection was performed using Mann-Whitney U-test and support vector machines with recursive feature elimination; then a radiomics signature was constructed by linear support vector machine. The predictive models were constructed using a linear regression model based on the clinicopathologic factors and radiomics signature, and nomogram was used for a visual prediction of the combined model. The predictive performances are evaluated with the sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve. A total of 647 radiomics features were extracted from each patient. About 23 ALN metastasis-related radiomics features were selected to construct the radiomics signature, including 17 texture features, 5 first-order statistical features, and one shape feature; patient age, tumor size, HER2 status, and vascular cancer thrombus accompanied or not were selected to construct the cilinicopathologic feature model. The sensitivity, specificity, accuracy, and are under the curve value of radiomics signature, clinicopathologic feature model, and the nomogram were 65.22%, 81.08%, 75.00%, and 0.819 (95% confidence interval [CI]: 0.776–0.861), 30.44%, 81.08%, 61.67%, and 0.605 (95% CI: 0.571–0.624) and 60.87%, 89.19%, 78.33%, and 0.810 (95% CI: 0.761–0.855), respectively. Radiomics methods based on the fat-suppressed T2 sequence and the nomogram are helpful for preoperative accurate predicting ALN metastasis." @default.
- W2998001432 created "2020-01-10" @default.
- W2998001432 creator A5018618942 @default.
- W2998001432 creator A5018700168 @default.
- W2998001432 creator A5020024624 @default.
- W2998001432 creator A5057816423 @default.
- W2998001432 creator A5072805737 @default.
- W2998001432 creator A5080806594 @default.
- W2998001432 creator A5089947989 @default.
- W2998001432 date "2020-09-01" @default.
- W2998001432 modified "2023-10-16" @default.
- W2998001432 title "Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Carcinoma Using Radiomics Features Based on the Fat-Suppressed T2 Sequence" @default.
- W2998001432 cites W1830454849 @default.
- W2998001432 cites W1964262357 @default.
- W2998001432 cites W1983494692 @default.
- W2998001432 cites W2004280628 @default.
- W2998001432 cites W2078909708 @default.
- W2998001432 cites W2117965471 @default.
- W2998001432 cites W2129487338 @default.
- W2998001432 cites W2131864238 @default.
- W2998001432 cites W2142635246 @default.
- W2998001432 cites W2174661749 @default.
- W2998001432 cites W2284281061 @default.
- W2998001432 cites W2346265746 @default.
- W2998001432 cites W2346343836 @default.
- W2998001432 cites W2549835484 @default.
- W2998001432 cites W2581354503 @default.
- W2998001432 cites W2583966135 @default.
- W2998001432 cites W2586494677 @default.
- W2998001432 cites W2726440677 @default.
- W2998001432 cites W2738703260 @default.
- W2998001432 cites W2747930650 @default.
- W2998001432 cites W2753148287 @default.
- W2998001432 cites W2783403213 @default.
- W2998001432 cites W2785884561 @default.
- W2998001432 cites W2807603100 @default.
- W2998001432 cites W2899882436 @default.
- W2998001432 cites W2917364154 @default.
- W2998001432 cites W2917837889 @default.
- W2998001432 cites W2921213180 @default.
- W2998001432 cites W2922056162 @default.
- W2998001432 cites W2941490313 @default.
- W2998001432 cites W2972447523 @default.
- W2998001432 doi "https://doi.org/10.1016/j.acra.2019.11.004" @default.
- W2998001432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31879160" @default.
- W2998001432 hasPublicationYear "2020" @default.
- W2998001432 type Work @default.
- W2998001432 sameAs 2998001432 @default.
- W2998001432 citedByCount "40" @default.
- W2998001432 countsByYear W29980014322020 @default.
- W2998001432 countsByYear W29980014322021 @default.
- W2998001432 countsByYear W29980014322022 @default.
- W2998001432 countsByYear W29980014322023 @default.
- W2998001432 crossrefType "journal-article" @default.
- W2998001432 hasAuthorship W2998001432A5018618942 @default.
- W2998001432 hasAuthorship W2998001432A5018700168 @default.
- W2998001432 hasAuthorship W2998001432A5020024624 @default.
- W2998001432 hasAuthorship W2998001432A5057816423 @default.
- W2998001432 hasAuthorship W2998001432A5072805737 @default.
- W2998001432 hasAuthorship W2998001432A5080806594 @default.
- W2998001432 hasAuthorship W2998001432A5089947989 @default.
- W2998001432 hasConcept C121608353 @default.
- W2998001432 hasConcept C126322002 @default.
- W2998001432 hasConcept C126838900 @default.
- W2998001432 hasConcept C143998085 @default.
- W2998001432 hasConcept C148483581 @default.
- W2998001432 hasConcept C154945302 @default.
- W2998001432 hasConcept C2778559731 @default.
- W2998001432 hasConcept C2779013556 @default.
- W2998001432 hasConcept C2780849966 @default.
- W2998001432 hasConcept C3018521938 @default.
- W2998001432 hasConcept C34626388 @default.
- W2998001432 hasConcept C41008148 @default.
- W2998001432 hasConcept C44249647 @default.
- W2998001432 hasConcept C530470458 @default.
- W2998001432 hasConcept C58471807 @default.
- W2998001432 hasConcept C71924100 @default.
- W2998001432 hasConceptScore W2998001432C121608353 @default.
- W2998001432 hasConceptScore W2998001432C126322002 @default.
- W2998001432 hasConceptScore W2998001432C126838900 @default.
- W2998001432 hasConceptScore W2998001432C143998085 @default.
- W2998001432 hasConceptScore W2998001432C148483581 @default.
- W2998001432 hasConceptScore W2998001432C154945302 @default.
- W2998001432 hasConceptScore W2998001432C2778559731 @default.
- W2998001432 hasConceptScore W2998001432C2779013556 @default.
- W2998001432 hasConceptScore W2998001432C2780849966 @default.
- W2998001432 hasConceptScore W2998001432C3018521938 @default.
- W2998001432 hasConceptScore W2998001432C34626388 @default.
- W2998001432 hasConceptScore W2998001432C41008148 @default.
- W2998001432 hasConceptScore W2998001432C44249647 @default.
- W2998001432 hasConceptScore W2998001432C530470458 @default.
- W2998001432 hasConceptScore W2998001432C58471807 @default.
- W2998001432 hasConceptScore W2998001432C71924100 @default.
- W2998001432 hasFunder F4320321001 @default.
- W2998001432 hasFunder F4320321543 @default.
- W2998001432 hasIssue "9" @default.
- W2998001432 hasLocation W29980014321 @default.
- W2998001432 hasLocation W29980014322 @default.