Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998031198> ?p ?o ?g. }
- W2998031198 abstract "We present a histogram layer for artificial neural networks (ANNs). An essential aspect of texture analysis is the extraction of features that describe the distribution of values in local spatial regions. The proposed histogram layer directly computes the spatial distribution of features for texture analysis and parameters for the layer are estimated during backpropagation. We compare our method with state-of-the-art texture encoding methods such as the Deep Encoding Network Pooling (DEP), Deep Texture Encoding Network (DeepTEN), Fisher Vector convolutional neural network (FV-CNN), and Multi-level Texture Encoding and Representation (MuLTER) on three material/texture datasets: (1) the Describable Texture Dataset (DTD); (2) an extension of the ground terrain in outdoor scenes (GTOS-mobile); (3) and a subset of the Materials in Context (MINC-2500) dataset. Results indicate that the inclusion of the proposed histogram layer improves performance. The source code for the histogram layer is publicly available." @default.
- W2998031198 created "2020-01-10" @default.
- W2998031198 creator A5042499322 @default.
- W2998031198 creator A5079676776 @default.
- W2998031198 creator A5085331414 @default.
- W2998031198 date "2020-01-01" @default.
- W2998031198 modified "2023-09-27" @default.
- W2998031198 title "Histogram Layers for Texture Analysis." @default.
- W2998031198 cites W1663973292 @default.
- W2998031198 cites W1840106123 @default.
- W2998031198 cites W1903029394 @default.
- W2998031198 cites W1909952827 @default.
- W2998031198 cites W1934184906 @default.
- W2998031198 cites W1953465585 @default.
- W2998031198 cites W1980038761 @default.
- W2998031198 cites W1996107076 @default.
- W2998031198 cites W2012420804 @default.
- W2998031198 cites W2040299224 @default.
- W2998031198 cites W2044465660 @default.
- W2998031198 cites W2047643928 @default.
- W2998031198 cites W2072072671 @default.
- W2998031198 cites W2097290407 @default.
- W2998031198 cites W2103061399 @default.
- W2998031198 cites W2124386111 @default.
- W2998031198 cites W2133163368 @default.
- W2998031198 cites W2158581396 @default.
- W2998031198 cites W2161969291 @default.
- W2998031198 cites W2163352848 @default.
- W2998031198 cites W2163605009 @default.
- W2998031198 cites W2187089797 @default.
- W2998031198 cites W2194775991 @default.
- W2998031198 cites W2310121607 @default.
- W2998031198 cites W2340427832 @default.
- W2998031198 cites W2518260411 @default.
- W2998031198 cites W2519340935 @default.
- W2998031198 cites W2520081143 @default.
- W2998031198 cites W2548437201 @default.
- W2998031198 cites W2566365295 @default.
- W2998031198 cites W2587530497 @default.
- W2998031198 cites W2766899523 @default.
- W2998031198 cites W2780661351 @default.
- W2998031198 cites W2782651872 @default.
- W2998031198 cites W2802159609 @default.
- W2998031198 cites W2888845754 @default.
- W2998031198 cites W2895238724 @default.
- W2998031198 cites W2896038642 @default.
- W2998031198 cites W2904980016 @default.
- W2998031198 cites W2907648650 @default.
- W2998031198 cites W2911956715 @default.
- W2998031198 cites W2914927009 @default.
- W2998031198 cites W2919115771 @default.
- W2998031198 cites W2952433032 @default.
- W2998031198 cites W2955793676 @default.
- W2998031198 cites W2962711740 @default.
- W2998031198 cites W2963190516 @default.
- W2998031198 cites W2963234238 @default.
- W2998031198 cites W2963403868 @default.
- W2998031198 cites W2963695615 @default.
- W2998031198 cites W2970897661 @default.
- W2998031198 cites W3102296895 @default.
- W2998031198 cites W3102779874 @default.
- W2998031198 cites W3122626815 @default.
- W2998031198 cites W3157286395 @default.
- W2998031198 cites W3169770376 @default.
- W2998031198 cites W3177361240 @default.
- W2998031198 cites W3177390845 @default.
- W2998031198 cites W2170590026 @default.
- W2998031198 hasPublicationYear "2020" @default.
- W2998031198 type Work @default.
- W2998031198 sameAs 2998031198 @default.
- W2998031198 citedByCount "4" @default.
- W2998031198 countsByYear W29980311982020 @default.
- W2998031198 countsByYear W29980311982021 @default.
- W2998031198 countsByYear W29980311982022 @default.
- W2998031198 crossrefType "posted-content" @default.
- W2998031198 hasAuthorship W2998031198A5042499322 @default.
- W2998031198 hasAuthorship W2998031198A5079676776 @default.
- W2998031198 hasAuthorship W2998031198A5085331414 @default.
- W2998031198 hasConcept C115961682 @default.
- W2998031198 hasConcept C124504099 @default.
- W2998031198 hasConcept C125411270 @default.
- W2998031198 hasConcept C153180895 @default.
- W2998031198 hasConcept C154945302 @default.
- W2998031198 hasConcept C155032097 @default.
- W2998031198 hasConcept C166957645 @default.
- W2998031198 hasConcept C205649164 @default.
- W2998031198 hasConcept C2779343474 @default.
- W2998031198 hasConcept C2781195486 @default.
- W2998031198 hasConcept C41008148 @default.
- W2998031198 hasConcept C50644808 @default.
- W2998031198 hasConcept C53533937 @default.
- W2998031198 hasConcept C63099799 @default.
- W2998031198 hasConcept C81363708 @default.
- W2998031198 hasConceptScore W2998031198C115961682 @default.
- W2998031198 hasConceptScore W2998031198C124504099 @default.
- W2998031198 hasConceptScore W2998031198C125411270 @default.
- W2998031198 hasConceptScore W2998031198C153180895 @default.
- W2998031198 hasConceptScore W2998031198C154945302 @default.
- W2998031198 hasConceptScore W2998031198C155032097 @default.
- W2998031198 hasConceptScore W2998031198C166957645 @default.