Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998049338> ?p ?o ?g. }
- W2998049338 endingPage "98" @default.
- W2998049338 startingPage "98" @default.
- W2998049338 abstract "During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low intrinsic electronic noise and it can detect even a single gas molecule in its proximity. This property of graphene makes is a suitable and promising candidate to detect a large variety of organic/inorganic chemicals and gases. Typical solid state gas sensors usually requires high operating temperature and they cannot detect very low concentrations of gases efficiently due to intrinsic noise caused by thermal motion of charge carriers at high temperatures. They also have low resolution and stability issues of their constituent materials (such as electrolytes, electrodes, and sensing material itself) in harsh environments. It accelerates the need of development of robust, highly sensitive and efficient gas sensor with low operating temperature. Graphene and its derivatives could be a prospective replacement of these solid-state sensors due to their better electronic attributes for moderate temperature applications. The presence of extremely low intrinsic noise in graphene makes it highly suitable to detect a very low concentration of organic/inorganic compounds (even a single molecule ca be detected with graphene). In this article, we simulated a novel graphene nanoribbon based field effect transistor (FET) and used it to detect propane and butane gases. These are flammable household/industrial gases that must be detected to avoid serious accidents. The effects of atmospheric oxygen and humidity have also been studied by mixing oxygen and water molecules with desired target gases (propane and butane). The change in source-to-drain current of FET in the proximity of the target gases has been used as a detection signal. Our simulated FET device showed a noticeable change in density of states and IV-characteristics in the presence of target gas molecules. Nanoscale simulations of FET based gas sensor have been done in Quantumwise Atomistix Toolkit (ATK). ATK is a commercially available nanoscale semiconductor device simulator that is used to model a large variety of nanoscale devices. Our proposed device can be converted into a physical device to get a low cost and small sized integrated gas sensor." @default.
- W2998049338 created "2020-01-10" @default.
- W2998049338 creator A5021541308 @default.
- W2998049338 creator A5058614811 @default.
- W2998049338 creator A5085047839 @default.
- W2998049338 date "2020-01-03" @default.
- W2998049338 modified "2023-09-28" @default.
- W2998049338 title "Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study" @default.
- W2998049338 cites W1408626229 @default.
- W2998049338 cites W1793818895 @default.
- W2998049338 cites W1966257119 @default.
- W2998049338 cites W1973880537 @default.
- W2998049338 cites W1980516378 @default.
- W2998049338 cites W1999691593 @default.
- W2998049338 cites W2014426329 @default.
- W2998049338 cites W2014449437 @default.
- W2998049338 cites W2018629692 @default.
- W2998049338 cites W2028172080 @default.
- W2998049338 cites W2029741257 @default.
- W2998049338 cites W2033605347 @default.
- W2998049338 cites W2045538607 @default.
- W2998049338 cites W2072233706 @default.
- W2998049338 cites W2075148335 @default.
- W2998049338 cites W2075618427 @default.
- W2998049338 cites W2076475450 @default.
- W2998049338 cites W2077817628 @default.
- W2998049338 cites W2078283628 @default.
- W2998049338 cites W2088321686 @default.
- W2998049338 cites W2093220751 @default.
- W2998049338 cites W2097757500 @default.
- W2998049338 cites W2108626816 @default.
- W2998049338 cites W2124781598 @default.
- W2998049338 cites W2147271478 @default.
- W2998049338 cites W2154054997 @default.
- W2998049338 cites W2167321669 @default.
- W2998049338 cites W2169580059 @default.
- W2998049338 cites W2185534263 @default.
- W2998049338 cites W2186621590 @default.
- W2998049338 cites W2293825348 @default.
- W2998049338 cites W2333216006 @default.
- W2998049338 cites W2442595789 @default.
- W2998049338 cites W2580738538 @default.
- W2998049338 cites W2605650449 @default.
- W2998049338 cites W2617615347 @default.
- W2998049338 cites W2619179742 @default.
- W2998049338 cites W2620173762 @default.
- W2998049338 cites W2779924386 @default.
- W2998049338 cites W2801611453 @default.
- W2998049338 cites W2808441870 @default.
- W2998049338 cites W2905338135 @default.
- W2998049338 cites W2912207476 @default.
- W2998049338 cites W2942577426 @default.
- W2998049338 cites W2949549090 @default.
- W2998049338 cites W2951610715 @default.
- W2998049338 cites W2952583632 @default.
- W2998049338 cites W2976079615 @default.
- W2998049338 cites W3023935833 @default.
- W2998049338 doi "https://doi.org/10.3390/nano10010098" @default.
- W2998049338 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7022693" @default.
- W2998049338 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31947803" @default.
- W2998049338 hasPublicationYear "2020" @default.
- W2998049338 type Work @default.
- W2998049338 sameAs 2998049338 @default.
- W2998049338 citedByCount "12" @default.
- W2998049338 countsByYear W29980493382021 @default.
- W2998049338 countsByYear W29980493382022 @default.
- W2998049338 countsByYear W29980493382023 @default.
- W2998049338 crossrefType "journal-article" @default.
- W2998049338 hasAuthorship W2998049338A5021541308 @default.
- W2998049338 hasAuthorship W2998049338A5058614811 @default.
- W2998049338 hasAuthorship W2998049338A5085047839 @default.
- W2998049338 hasBestOaLocation W29980493381 @default.
- W2998049338 hasConcept C119599485 @default.
- W2998049338 hasConcept C127413603 @default.
- W2998049338 hasConcept C145598152 @default.
- W2998049338 hasConcept C161790260 @default.
- W2998049338 hasConcept C165801399 @default.
- W2998049338 hasConcept C171250308 @default.
- W2998049338 hasConcept C172385210 @default.
- W2998049338 hasConcept C178790620 @default.
- W2998049338 hasConcept C185592680 @default.
- W2998049338 hasConcept C192562407 @default.
- W2998049338 hasConcept C2776345496 @default.
- W2998049338 hasConcept C2778717364 @default.
- W2998049338 hasConcept C30080830 @default.
- W2998049338 hasConcept C49040817 @default.
- W2998049338 hasConceptScore W2998049338C119599485 @default.
- W2998049338 hasConceptScore W2998049338C127413603 @default.
- W2998049338 hasConceptScore W2998049338C145598152 @default.
- W2998049338 hasConceptScore W2998049338C161790260 @default.
- W2998049338 hasConceptScore W2998049338C165801399 @default.
- W2998049338 hasConceptScore W2998049338C171250308 @default.
- W2998049338 hasConceptScore W2998049338C172385210 @default.
- W2998049338 hasConceptScore W2998049338C178790620 @default.
- W2998049338 hasConceptScore W2998049338C185592680 @default.
- W2998049338 hasConceptScore W2998049338C192562407 @default.
- W2998049338 hasConceptScore W2998049338C2776345496 @default.
- W2998049338 hasConceptScore W2998049338C2778717364 @default.