Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998049340> ?p ?o ?g. }
- W2998049340 endingPage "113234" @default.
- W2998049340 startingPage "113234" @default.
- W2998049340 abstract "Disaster management operations are information intensive activities due to high uncertainty and complex information needs. Emergency response planners need to effectively plan response activities with limited resources and assign rescue teams to specific disaster sites with high probability of survivors swiftly. Decision making becomes tougher since the limited information available is heterogenous, untimely and often fragmented. We address the problem of lack of insightful information of the disaster sites by utilizing image data obtained from smart infrastructures. We collect geo-tagged images from earthquake-hit regions and apply deep learning method for classification of these images to identify survivors in debris. We find that deep learning method is able to classify the images with significantly higher accuracy than the conventionally used machine learning methods for image classification and utilizes significantly lesser time and computational resources. The novel application of image analytics and the resultant findings from our models have valuable implications for effective disaster response operations, especially in smart urban settlements." @default.
- W2998049340 created "2020-01-10" @default.
- W2998049340 creator A5030771648 @default.
- W2998049340 creator A5045996720 @default.
- W2998049340 date "2020-03-01" @default.
- W2998049340 modified "2023-10-11" @default.
- W2998049340 title "Exploring the role of deep neural networks for post-disaster decision support" @default.
- W2998049340 cites W1203053091 @default.
- W2998049340 cites W1596717185 @default.
- W2998049340 cites W1966907853 @default.
- W2998049340 cites W1988160630 @default.
- W2998049340 cites W1994703496 @default.
- W2998049340 cites W2005452768 @default.
- W2998049340 cites W2009540290 @default.
- W2998049340 cites W2013261784 @default.
- W2998049340 cites W2017637863 @default.
- W2998049340 cites W2023206548 @default.
- W2998049340 cites W2035743720 @default.
- W2998049340 cites W2036616350 @default.
- W2998049340 cites W2057720181 @default.
- W2998049340 cites W2081430667 @default.
- W2998049340 cites W2086713102 @default.
- W2998049340 cites W2089207319 @default.
- W2998049340 cites W2095867983 @default.
- W2998049340 cites W2101927907 @default.
- W2998049340 cites W2130486630 @default.
- W2998049340 cites W2131816657 @default.
- W2998049340 cites W2131954179 @default.
- W2998049340 cites W2165698076 @default.
- W2998049340 cites W2168008269 @default.
- W2998049340 cites W2170505850 @default.
- W2998049340 cites W2221741097 @default.
- W2998049340 cites W2231227584 @default.
- W2998049340 cites W2238499080 @default.
- W2998049340 cites W2466279936 @default.
- W2998049340 cites W2540298673 @default.
- W2998049340 cites W2558580397 @default.
- W2998049340 cites W2593952285 @default.
- W2998049340 cites W2618530766 @default.
- W2998049340 cites W2714779472 @default.
- W2998049340 cites W2762466482 @default.
- W2998049340 cites W2769984510 @default.
- W2998049340 cites W2772849600 @default.
- W2998049340 cites W2793624120 @default.
- W2998049340 cites W2799832028 @default.
- W2998049340 cites W2810292802 @default.
- W2998049340 cites W2884345717 @default.
- W2998049340 cites W2888032469 @default.
- W2998049340 cites W2889059162 @default.
- W2998049340 cites W2899778597 @default.
- W2998049340 cites W2905146576 @default.
- W2998049340 cites W2918378401 @default.
- W2998049340 doi "https://doi.org/10.1016/j.dss.2019.113234" @default.
- W2998049340 hasPublicationYear "2020" @default.
- W2998049340 type Work @default.
- W2998049340 sameAs 2998049340 @default.
- W2998049340 citedByCount "36" @default.
- W2998049340 countsByYear W29980493402020 @default.
- W2998049340 countsByYear W29980493402021 @default.
- W2998049340 countsByYear W29980493402022 @default.
- W2998049340 countsByYear W29980493402023 @default.
- W2998049340 crossrefType "journal-article" @default.
- W2998049340 hasAuthorship W2998049340A5030771648 @default.
- W2998049340 hasAuthorship W2998049340A5045996720 @default.
- W2998049340 hasConcept C107327155 @default.
- W2998049340 hasConcept C108583219 @default.
- W2998049340 hasConcept C115961682 @default.
- W2998049340 hasConcept C119857082 @default.
- W2998049340 hasConcept C154945302 @default.
- W2998049340 hasConcept C16678853 @default.
- W2998049340 hasConcept C166957645 @default.
- W2998049340 hasConcept C17744445 @default.
- W2998049340 hasConcept C199539241 @default.
- W2998049340 hasConcept C205649164 @default.
- W2998049340 hasConcept C2522767166 @default.
- W2998049340 hasConcept C2776505523 @default.
- W2998049340 hasConcept C3018653863 @default.
- W2998049340 hasConcept C41008148 @default.
- W2998049340 hasConcept C62555980 @default.
- W2998049340 hasConcept C75294576 @default.
- W2998049340 hasConceptScore W2998049340C107327155 @default.
- W2998049340 hasConceptScore W2998049340C108583219 @default.
- W2998049340 hasConceptScore W2998049340C115961682 @default.
- W2998049340 hasConceptScore W2998049340C119857082 @default.
- W2998049340 hasConceptScore W2998049340C154945302 @default.
- W2998049340 hasConceptScore W2998049340C16678853 @default.
- W2998049340 hasConceptScore W2998049340C166957645 @default.
- W2998049340 hasConceptScore W2998049340C17744445 @default.
- W2998049340 hasConceptScore W2998049340C199539241 @default.
- W2998049340 hasConceptScore W2998049340C205649164 @default.
- W2998049340 hasConceptScore W2998049340C2522767166 @default.
- W2998049340 hasConceptScore W2998049340C2776505523 @default.
- W2998049340 hasConceptScore W2998049340C3018653863 @default.
- W2998049340 hasConceptScore W2998049340C41008148 @default.
- W2998049340 hasConceptScore W2998049340C62555980 @default.
- W2998049340 hasConceptScore W2998049340C75294576 @default.
- W2998049340 hasLocation W29980493401 @default.
- W2998049340 hasOpenAccess W2998049340 @default.