Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998092949> ?p ?o ?g. }
- W2998092949 endingPage "2012" @default.
- W2998092949 startingPage "2000" @default.
- W2998092949 abstract "Brain region-of-interest (ROI) segmentation based on structural magnetic resonance imaging (MRI) scans is an essential step for many computer-aid medical image analysis applications. Due to low intensity contrast around ROI boundary and large inter-subject variance, it has been remaining a challenging task to effectively segment brain ROIs from structural MR images. Even though several deep learning methods for brain MR image segmentation have been developed, most of them do not incorporate shape priors to take advantage of the regularity of brain structures, thus leading to sub-optimal performance. To address this issue, we propose an anatomical attention guided deep learning framework for brain ROI segmentation of structural MR images, containing two subnetworks. The first one is a segmentation subnetwork, used to simultaneously extract discriminative image representation and segment ROIs for each input MR image. The second one is an anatomical attention subnetwork, designed to capture the anatomical structure information of the brain from a set of labeled atlases. To utilize the anatomical attention knowledge learned from atlases, we develop an anatomical gate architecture to fuse feature maps derived from a set of atlas label maps and those from the to-be-segmented image for brain ROI segmentation. In this way, the anatomical prior learned from atlases can be explicitly employed to guide the segmentation process for performance improvement. Within this framework, we develop two anatomical attention guided segmentation models, denoted as anatomical gated fully convolutional network (AG-FCN) and anatomical gated U-Net (AG-UNet), respectively. Experimental results on both ADNI and LONI-LPBA40 datasets suggest that the proposed AG-FCN and AG-UNet methods achieve superior performance in ROI segmentation of brain MR images, compared with several state-of-the-art methods." @default.
- W2998092949 created "2020-01-10" @default.
- W2998092949 creator A5018821033 @default.
- W2998092949 creator A5041010111 @default.
- W2998092949 creator A5043777246 @default.
- W2998092949 creator A5076674630 @default.
- W2998092949 date "2020-06-01" @default.
- W2998092949 modified "2023-10-16" @default.
- W2998092949 title "Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images" @default.
- W2998092949 cites W1893483670 @default.
- W2998092949 cites W1969257438 @default.
- W2998092949 cites W1970928383 @default.
- W2998092949 cites W1982852576 @default.
- W2998092949 cites W2006096283 @default.
- W2998092949 cites W2010587020 @default.
- W2998092949 cites W2014105136 @default.
- W2998092949 cites W2018662705 @default.
- W2998092949 cites W2032377318 @default.
- W2998092949 cites W2053984362 @default.
- W2998092949 cites W2069331971 @default.
- W2998092949 cites W2078524519 @default.
- W2998092949 cites W2083099567 @default.
- W2998092949 cites W2092245015 @default.
- W2998092949 cites W2093723730 @default.
- W2998092949 cites W2103857226 @default.
- W2998092949 cites W2114740909 @default.
- W2998092949 cites W2115167851 @default.
- W2998092949 cites W2117340355 @default.
- W2998092949 cites W2128806031 @default.
- W2998092949 cites W2133703021 @default.
- W2998092949 cites W2146089088 @default.
- W2998092949 cites W2148157540 @default.
- W2998092949 cites W2163595993 @default.
- W2998092949 cites W2170500377 @default.
- W2998092949 cites W2194775991 @default.
- W2998092949 cites W2272252788 @default.
- W2998092949 cites W2327949797 @default.
- W2998092949 cites W2395611524 @default.
- W2998092949 cites W2403074563 @default.
- W2998092949 cites W2413700323 @default.
- W2998092949 cites W2523580789 @default.
- W2998092949 cites W2556767548 @default.
- W2998092949 cites W2589647984 @default.
- W2998092949 cites W2746232387 @default.
- W2998092949 cites W2765366332 @default.
- W2998092949 cites W2771234593 @default.
- W2998092949 cites W2787999987 @default.
- W2998092949 cites W2790094613 @default.
- W2998092949 cites W2795981973 @default.
- W2998092949 cites W2803469628 @default.
- W2998092949 cites W2805494981 @default.
- W2998092949 cites W2809228466 @default.
- W2998092949 cites W2909778238 @default.
- W2998092949 cites W2922050091 @default.
- W2998092949 cites W2922901657 @default.
- W2998092949 cites W2945727247 @default.
- W2998092949 cites W2979553087 @default.
- W2998092949 cites W2980150285 @default.
- W2998092949 cites W2983286250 @default.
- W2998092949 doi "https://doi.org/10.1109/tmi.2019.2962792" @default.
- W2998092949 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31899417" @default.
- W2998092949 hasPublicationYear "2020" @default.
- W2998092949 type Work @default.
- W2998092949 sameAs 2998092949 @default.
- W2998092949 citedByCount "36" @default.
- W2998092949 countsByYear W29980929492020 @default.
- W2998092949 countsByYear W29980929492021 @default.
- W2998092949 countsByYear W29980929492022 @default.
- W2998092949 countsByYear W29980929492023 @default.
- W2998092949 crossrefType "journal-article" @default.
- W2998092949 hasAuthorship W2998092949A5018821033 @default.
- W2998092949 hasAuthorship W2998092949A5041010111 @default.
- W2998092949 hasAuthorship W2998092949A5043777246 @default.
- W2998092949 hasAuthorship W2998092949A5076674630 @default.
- W2998092949 hasConcept C124504099 @default.
- W2998092949 hasConcept C153180895 @default.
- W2998092949 hasConcept C154945302 @default.
- W2998092949 hasConcept C15744967 @default.
- W2998092949 hasConcept C169760540 @default.
- W2998092949 hasConcept C19609008 @default.
- W2998092949 hasConcept C31972630 @default.
- W2998092949 hasConcept C41008148 @default.
- W2998092949 hasConcept C58693492 @default.
- W2998092949 hasConcept C89600930 @default.
- W2998092949 hasConceptScore W2998092949C124504099 @default.
- W2998092949 hasConceptScore W2998092949C153180895 @default.
- W2998092949 hasConceptScore W2998092949C154945302 @default.
- W2998092949 hasConceptScore W2998092949C15744967 @default.
- W2998092949 hasConceptScore W2998092949C169760540 @default.
- W2998092949 hasConceptScore W2998092949C19609008 @default.
- W2998092949 hasConceptScore W2998092949C31972630 @default.
- W2998092949 hasConceptScore W2998092949C41008148 @default.
- W2998092949 hasConceptScore W2998092949C58693492 @default.
- W2998092949 hasConceptScore W2998092949C89600930 @default.
- W2998092949 hasFunder F4320320006 @default.
- W2998092949 hasFunder F4320321001 @default.
- W2998092949 hasFunder F4320321543 @default.
- W2998092949 hasFunder F4320324174 @default.