Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998135344> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2998135344 endingPage "59" @default.
- W2998135344 startingPage "47" @default.
- W2998135344 abstract "Abstract We are interested in comparing the performance of various nonlinear estimators of parameters of the standard nonlinear regression model. While the standard nonlinear least squares estimator is vulnerable to the presence of outlying measurements in the data, there exist several robust alternatives. However, it is not clear which estimator should be used for a given dataset and this question remains extremely difficult (or perhaps infeasible) to be answered theoretically. Metalearning represents a computationally intensive methodology for optimal selection of algorithms (or methods) and is used here to predict the most suitable nonlinear estimator for a particular dataset. The classification rule is learned over a training database of 24 publicly available datasets. The results of the primary learning give an interesting argument in favor of the nonlinear least weighted squares estimator, which turns out to be the most suitable one for the majority of datasets. The subsequent metalearning reveals that tests of normality and heteroscedasticity play a crucial role in finding the most suitable nonlinear estimator." @default.
- W2998135344 created "2020-01-10" @default.
- W2998135344 creator A5008683889 @default.
- W2998135344 creator A5052108378 @default.
- W2998135344 date "2019-12-01" @default.
- W2998135344 modified "2023-10-16" @default.
- W2998135344 title "Statistical learning for recommending (robust) nonlinear regression methods" @default.
- W2998135344 cites W1036701184 @default.
- W2998135344 cites W1964524778 @default.
- W2998135344 cites W1984570338 @default.
- W2998135344 cites W1986948589 @default.
- W2998135344 cites W2021008760 @default.
- W2998135344 cites W2064839096 @default.
- W2998135344 cites W2071948161 @default.
- W2998135344 cites W2083131242 @default.
- W2998135344 cites W2131813306 @default.
- W2998135344 cites W2139278916 @default.
- W2998135344 cites W2145881755 @default.
- W2998135344 cites W2146225536 @default.
- W2998135344 cites W2155423555 @default.
- W2998135344 cites W2470953135 @default.
- W2998135344 cites W2787894218 @default.
- W2998135344 cites W4252731897 @default.
- W2998135344 cites W4255230573 @default.
- W2998135344 doi "https://doi.org/10.2478/jamsi-2019-0008" @default.
- W2998135344 hasPublicationYear "2019" @default.
- W2998135344 type Work @default.
- W2998135344 sameAs 2998135344 @default.
- W2998135344 citedByCount "1" @default.
- W2998135344 countsByYear W29981353442021 @default.
- W2998135344 crossrefType "journal-article" @default.
- W2998135344 hasAuthorship W2998135344A5008683889 @default.
- W2998135344 hasAuthorship W2998135344A5052108378 @default.
- W2998135344 hasBestOaLocation W29981353441 @default.
- W2998135344 hasConcept C101104100 @default.
- W2998135344 hasConcept C105795698 @default.
- W2998135344 hasConcept C119857082 @default.
- W2998135344 hasConcept C121332964 @default.
- W2998135344 hasConcept C124101348 @default.
- W2998135344 hasConcept C152877465 @default.
- W2998135344 hasConcept C154945302 @default.
- W2998135344 hasConcept C158622935 @default.
- W2998135344 hasConcept C185429906 @default.
- W2998135344 hasConcept C2776157432 @default.
- W2998135344 hasConcept C33923547 @default.
- W2998135344 hasConcept C41008148 @default.
- W2998135344 hasConcept C46889948 @default.
- W2998135344 hasConcept C62520636 @default.
- W2998135344 hasConceptScore W2998135344C101104100 @default.
- W2998135344 hasConceptScore W2998135344C105795698 @default.
- W2998135344 hasConceptScore W2998135344C119857082 @default.
- W2998135344 hasConceptScore W2998135344C121332964 @default.
- W2998135344 hasConceptScore W2998135344C124101348 @default.
- W2998135344 hasConceptScore W2998135344C152877465 @default.
- W2998135344 hasConceptScore W2998135344C154945302 @default.
- W2998135344 hasConceptScore W2998135344C158622935 @default.
- W2998135344 hasConceptScore W2998135344C185429906 @default.
- W2998135344 hasConceptScore W2998135344C2776157432 @default.
- W2998135344 hasConceptScore W2998135344C33923547 @default.
- W2998135344 hasConceptScore W2998135344C41008148 @default.
- W2998135344 hasConceptScore W2998135344C46889948 @default.
- W2998135344 hasConceptScore W2998135344C62520636 @default.
- W2998135344 hasIssue "2" @default.
- W2998135344 hasLocation W29981353441 @default.
- W2998135344 hasLocation W29981353442 @default.
- W2998135344 hasOpenAccess W2998135344 @default.
- W2998135344 hasPrimaryLocation W29981353441 @default.
- W2998135344 hasRelatedWork W1517611895 @default.
- W2998135344 hasRelatedWork W1984731603 @default.
- W2998135344 hasRelatedWork W2040181487 @default.
- W2998135344 hasRelatedWork W2068039897 @default.
- W2998135344 hasRelatedWork W2076399149 @default.
- W2998135344 hasRelatedWork W2109135198 @default.
- W2998135344 hasRelatedWork W2140312996 @default.
- W2998135344 hasRelatedWork W3122059706 @default.
- W2998135344 hasRelatedWork W3163510981 @default.
- W2998135344 hasRelatedWork W3209552673 @default.
- W2998135344 hasVolume "15" @default.
- W2998135344 isParatext "false" @default.
- W2998135344 isRetracted "false" @default.
- W2998135344 magId "2998135344" @default.
- W2998135344 workType "article" @default.