Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998167908> ?p ?o ?g. }
- W2998167908 endingPage "119903" @default.
- W2998167908 startingPage "119903" @default.
- W2998167908 abstract "Abstract With the advent of Big Data Analytics (BDA) alongside the maturity of specific improvement approaches such as Lean Six Sigma (LSS) and Green Manufacturing (GM), the integration of these initiatives to achieve higher environmental performance (EP) is gathering the interest of both researchers and practitioners. The present study builds on the resources based view of capabilities to propose and empirically test a framework exploring whether LSS and GM mediate the relationship between BDA capabilities and EP. A two-stage hybrid Factorial Analysis - Structural Equation Modeling is used to draw insights from 201 industry practitioners from North African companies. The findings confirm the direct influence of BDA on EP and also identify LSS and GM as significant mediating variables that act as a catalyst to boost indirect impacts of BDA on EP. This study can help researchers and practitioners to fully understand and benefit from BDA capabilities and improvement initiatives such as LSS and GM while managing environmental issues. The study discusses theoretical and managerial implications for enhancing the environmental performance of the manufacturing organizations." @default.
- W2998167908 created "2020-01-10" @default.
- W2998167908 creator A5019290738 @default.
- W2998167908 creator A5048934326 @default.
- W2998167908 creator A5057115054 @default.
- W2998167908 creator A5062909705 @default.
- W2998167908 creator A5080150523 @default.
- W2998167908 date "2020-04-01" @default.
- W2998167908 modified "2023-10-18" @default.
- W2998167908 title "The integrated effect of Big Data Analytics, Lean Six Sigma and Green Manufacturing on the environmental performance of manufacturing companies: The case of North Africa" @default.
- W2998167908 cites W1569395187 @default.
- W2998167908 cites W1970621455 @default.
- W2998167908 cites W1989187521 @default.
- W2998167908 cites W2005159477 @default.
- W2998167908 cites W2082833368 @default.
- W2998167908 cites W2099530318 @default.
- W2998167908 cites W2124161045 @default.
- W2998167908 cites W2134884007 @default.
- W2998167908 cites W2138340764 @default.
- W2998167908 cites W2280019980 @default.
- W2998167908 cites W2290173923 @default.
- W2998167908 cites W2297633139 @default.
- W2998167908 cites W2340823910 @default.
- W2998167908 cites W2482017365 @default.
- W2998167908 cites W2487200295 @default.
- W2998167908 cites W2507853270 @default.
- W2998167908 cites W2515300481 @default.
- W2998167908 cites W2517745273 @default.
- W2998167908 cites W2557601883 @default.
- W2998167908 cites W2582291441 @default.
- W2998167908 cites W2587843493 @default.
- W2998167908 cites W2606000995 @default.
- W2998167908 cites W2734575787 @default.
- W2998167908 cites W2735550156 @default.
- W2998167908 cites W2735585255 @default.
- W2998167908 cites W2760785638 @default.
- W2998167908 cites W2773444942 @default.
- W2998167908 cites W2790872967 @default.
- W2998167908 cites W2791547408 @default.
- W2998167908 cites W2791684182 @default.
- W2998167908 cites W2792976193 @default.
- W2998167908 cites W2801235029 @default.
- W2998167908 cites W2806758488 @default.
- W2998167908 cites W2809067689 @default.
- W2998167908 cites W2823893551 @default.
- W2998167908 cites W2879925692 @default.
- W2998167908 cites W2887383680 @default.
- W2998167908 cites W2889775379 @default.
- W2998167908 cites W2891323154 @default.
- W2998167908 cites W2893798067 @default.
- W2998167908 cites W2896347222 @default.
- W2998167908 cites W2897169734 @default.
- W2998167908 cites W2899614238 @default.
- W2998167908 cites W2905811773 @default.
- W2998167908 cites W2907622895 @default.
- W2998167908 cites W2911265856 @default.
- W2998167908 cites W2917376407 @default.
- W2998167908 cites W2925326639 @default.
- W2998167908 cites W2939965254 @default.
- W2998167908 cites W2944249691 @default.
- W2998167908 cites W2947007633 @default.
- W2998167908 cites W2976017899 @default.
- W2998167908 cites W2982493052 @default.
- W2998167908 doi "https://doi.org/10.1016/j.jclepro.2019.119903" @default.
- W2998167908 hasPublicationYear "2020" @default.
- W2998167908 type Work @default.
- W2998167908 sameAs 2998167908 @default.
- W2998167908 citedByCount "128" @default.
- W2998167908 countsByYear W29981679082020 @default.
- W2998167908 countsByYear W29981679082021 @default.
- W2998167908 countsByYear W29981679082022 @default.
- W2998167908 countsByYear W29981679082023 @default.
- W2998167908 crossrefType "journal-article" @default.
- W2998167908 hasAuthorship W2998167908A5019290738 @default.
- W2998167908 hasAuthorship W2998167908A5048934326 @default.
- W2998167908 hasAuthorship W2998167908A5057115054 @default.
- W2998167908 hasAuthorship W2998167908A5062909705 @default.
- W2998167908 hasAuthorship W2998167908A5080150523 @default.
- W2998167908 hasConcept C117671659 @default.
- W2998167908 hasConcept C124101348 @default.
- W2998167908 hasConcept C127413603 @default.
- W2998167908 hasConcept C137335462 @default.
- W2998167908 hasConcept C144133560 @default.
- W2998167908 hasConcept C162853370 @default.
- W2998167908 hasConcept C175700187 @default.
- W2998167908 hasConcept C23119410 @default.
- W2998167908 hasConcept C2522767166 @default.
- W2998167908 hasConcept C2778139897 @default.
- W2998167908 hasConcept C41008148 @default.
- W2998167908 hasConcept C75684735 @default.
- W2998167908 hasConcept C79158427 @default.
- W2998167908 hasConceptScore W2998167908C117671659 @default.
- W2998167908 hasConceptScore W2998167908C124101348 @default.
- W2998167908 hasConceptScore W2998167908C127413603 @default.
- W2998167908 hasConceptScore W2998167908C137335462 @default.
- W2998167908 hasConceptScore W2998167908C144133560 @default.
- W2998167908 hasConceptScore W2998167908C162853370 @default.
- W2998167908 hasConceptScore W2998167908C175700187 @default.