Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998183634> ?p ?o ?g. }
- W2998183634 endingPage "11" @default.
- W2998183634 startingPage "1" @default.
- W2998183634 abstract "The effective forecast of container volumes can provide decision support for port scheduling and operating. In this work, by deep learning the historical dataset, the long short-term memory (LSTM) recurrent neural network (RNN) is used to predict daily volumes of containers which will enter the storage yard. The raw dataset of daily container volumes in a certain port is chosen as the training set and preprocessed with box plot. Then the LSTM model is established with Python and Tensorflow framework. The comparison between LSTM and other prediction methods like ARIMA model and BP neural network is also provided in this study, and the prediction gap of LSTM is lower than other methods. It is promising that the proposed LSTM is helpful to predict the daily volumes of containers." @default.
- W2998183634 created "2020-01-10" @default.
- W2998183634 creator A5025082213 @default.
- W2998183634 creator A5043179723 @default.
- W2998183634 creator A5046601837 @default.
- W2998183634 creator A5068881399 @default.
- W2998183634 date "2019-12-25" @default.
- W2998183634 modified "2023-10-17" @default.
- W2998183634 title "The Daily Container Volumes Prediction of Storage Yard in Port with Long Short-Term Memory Recurrent Neural Network" @default.
- W2998183634 cites W1871376293 @default.
- W2998183634 cites W1969311436 @default.
- W2998183634 cites W2005747371 @default.
- W2998183634 cites W2026508613 @default.
- W2998183634 cites W2035258347 @default.
- W2998183634 cites W2044280558 @default.
- W2998183634 cites W2045793544 @default.
- W2998183634 cites W2064675550 @default.
- W2998183634 cites W2070190840 @default.
- W2998183634 cites W2089217930 @default.
- W2998183634 cites W2147568880 @default.
- W2998183634 cites W2163922914 @default.
- W2998183634 cites W2164793142 @default.
- W2998183634 cites W2171375535 @default.
- W2998183634 cites W2344597853 @default.
- W2998183634 cites W2463099609 @default.
- W2998183634 cites W2618384536 @default.
- W2998183634 cites W2624385633 @default.
- W2998183634 cites W2764791077 @default.
- W2998183634 cites W2781420345 @default.
- W2998183634 cites W2782968911 @default.
- W2998183634 cites W2791961911 @default.
- W2998183634 cites W2794078445 @default.
- W2998183634 cites W2889230014 @default.
- W2998183634 cites W2921809274 @default.
- W2998183634 cites W4205947740 @default.
- W2998183634 doi "https://doi.org/10.1155/2019/5764602" @default.
- W2998183634 hasPublicationYear "2019" @default.
- W2998183634 type Work @default.
- W2998183634 sameAs 2998183634 @default.
- W2998183634 citedByCount "21" @default.
- W2998183634 countsByYear W29981836342020 @default.
- W2998183634 countsByYear W29981836342021 @default.
- W2998183634 countsByYear W29981836342022 @default.
- W2998183634 countsByYear W29981836342023 @default.
- W2998183634 crossrefType "journal-article" @default.
- W2998183634 hasAuthorship W2998183634A5025082213 @default.
- W2998183634 hasAuthorship W2998183634A5043179723 @default.
- W2998183634 hasAuthorship W2998183634A5046601837 @default.
- W2998183634 hasAuthorship W2998183634A5068881399 @default.
- W2998183634 hasBestOaLocation W29981836341 @default.
- W2998183634 hasConcept C108583219 @default.
- W2998183634 hasConcept C111919701 @default.
- W2998183634 hasConcept C119599485 @default.
- W2998183634 hasConcept C119857082 @default.
- W2998183634 hasConcept C121332964 @default.
- W2998183634 hasConcept C127413603 @default.
- W2998183634 hasConcept C133488467 @default.
- W2998183634 hasConcept C147168706 @default.
- W2998183634 hasConcept C151406439 @default.
- W2998183634 hasConcept C154945302 @default.
- W2998183634 hasConcept C206729178 @default.
- W2998183634 hasConcept C21547014 @default.
- W2998183634 hasConcept C24338571 @default.
- W2998183634 hasConcept C2781018962 @default.
- W2998183634 hasConcept C32802771 @default.
- W2998183634 hasConcept C41008148 @default.
- W2998183634 hasConcept C50644808 @default.
- W2998183634 hasConcept C519991488 @default.
- W2998183634 hasConcept C62520636 @default.
- W2998183634 hasConcept C78519656 @default.
- W2998183634 hasConcept C94026978 @default.
- W2998183634 hasConceptScore W2998183634C108583219 @default.
- W2998183634 hasConceptScore W2998183634C111919701 @default.
- W2998183634 hasConceptScore W2998183634C119599485 @default.
- W2998183634 hasConceptScore W2998183634C119857082 @default.
- W2998183634 hasConceptScore W2998183634C121332964 @default.
- W2998183634 hasConceptScore W2998183634C127413603 @default.
- W2998183634 hasConceptScore W2998183634C133488467 @default.
- W2998183634 hasConceptScore W2998183634C147168706 @default.
- W2998183634 hasConceptScore W2998183634C151406439 @default.
- W2998183634 hasConceptScore W2998183634C154945302 @default.
- W2998183634 hasConceptScore W2998183634C206729178 @default.
- W2998183634 hasConceptScore W2998183634C21547014 @default.
- W2998183634 hasConceptScore W2998183634C24338571 @default.
- W2998183634 hasConceptScore W2998183634C2781018962 @default.
- W2998183634 hasConceptScore W2998183634C32802771 @default.
- W2998183634 hasConceptScore W2998183634C41008148 @default.
- W2998183634 hasConceptScore W2998183634C50644808 @default.
- W2998183634 hasConceptScore W2998183634C519991488 @default.
- W2998183634 hasConceptScore W2998183634C62520636 @default.
- W2998183634 hasConceptScore W2998183634C78519656 @default.
- W2998183634 hasConceptScore W2998183634C94026978 @default.
- W2998183634 hasFunder F4320321001 @default.
- W2998183634 hasLocation W29981836341 @default.
- W2998183634 hasLocation W29981836342 @default.
- W2998183634 hasOpenAccess W2998183634 @default.
- W2998183634 hasPrimaryLocation W29981836341 @default.
- W2998183634 hasRelatedWork W2912153778 @default.