Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998188743> ?p ?o ?g. }
- W2998188743 endingPage "114259" @default.
- W2998188743 startingPage "114259" @default.
- W2998188743 abstract "Abstract Reliable and accurate probabilistic forecasting of wind speed is of vital importance for the utilization of wind energy and operation of power systems. In this paper, a probabilistic spatiotemporal deep learning model for wind speed forecasting is proposed. The underlying wind turbines are embedded into a grid space, which fully expresses the spatiotemporal variation process of the airflow. Thus, advanced image recognition methods can be employed to solve the spatiotemporal wind speed forecasting problem. The proposed model is based on a spatial–temporal neural network (STNN) and variational Bayesian inference. The proposed STNN combines the convolutional GRU model and 3D Convolutional Neural Network and uses an encoding-forecasting structure to generate the spatiotemporal predictions. Variational Bayesian inference is employed to obtain the approximated posterior parameter distribution of the model and determine the probability of the prediction. The proposed model is applied in two real-world case studies in United States. The experimental results demonstrate that the proposed model significantly outperforms other models in both forecast skill and forecast reliability. The uncertainty estimation is also shown and it demonstrates that the proposed model is able to provide effective uncertainty estimation in both the time level and space level." @default.
- W2998188743 created "2020-01-10" @default.
- W2998188743 creator A5006387641 @default.
- W2998188743 creator A5028132895 @default.
- W2998188743 creator A5039778502 @default.
- W2998188743 creator A5061972088 @default.
- W2998188743 creator A5074423713 @default.
- W2998188743 creator A5076202709 @default.
- W2998188743 creator A5079367813 @default.
- W2998188743 date "2020-02-01" @default.
- W2998188743 modified "2023-10-15" @default.
- W2998188743 title "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model" @default.
- W2998188743 cites W1495476169 @default.
- W2998188743 cites W1567512734 @default.
- W2998188743 cites W1965770722 @default.
- W2998188743 cites W1977587074 @default.
- W2998188743 cites W1982129843 @default.
- W2998188743 cites W1983364832 @default.
- W2998188743 cites W2051086873 @default.
- W2998188743 cites W2058504886 @default.
- W2998188743 cites W2061973578 @default.
- W2998188743 cites W2066481368 @default.
- W2998188743 cites W2070960910 @default.
- W2998188743 cites W2074715647 @default.
- W2998188743 cites W2093776584 @default.
- W2998188743 cites W2116740585 @default.
- W2998188743 cites W2132477882 @default.
- W2998188743 cites W2153263933 @default.
- W2998188743 cites W2156250920 @default.
- W2998188743 cites W2157331557 @default.
- W2998188743 cites W2191329106 @default.
- W2998188743 cites W2202062742 @default.
- W2998188743 cites W2205533964 @default.
- W2998188743 cites W2754015034 @default.
- W2998188743 cites W2782428417 @default.
- W2998188743 cites W2792703144 @default.
- W2998188743 cites W2793121129 @default.
- W2998188743 cites W2806443828 @default.
- W2998188743 cites W2807252330 @default.
- W2998188743 cites W2808628700 @default.
- W2998188743 cites W2903162817 @default.
- W2998188743 cites W2910279921 @default.
- W2998188743 cites W2914823774 @default.
- W2998188743 cites W2920839169 @default.
- W2998188743 cites W2924950036 @default.
- W2998188743 cites W2937276134 @default.
- W2998188743 cites W2937440203 @default.
- W2998188743 cites W2963335750 @default.
- W2998188743 cites W2965206442 @default.
- W2998188743 cites W2978050781 @default.
- W2998188743 cites W326249748 @default.
- W2998188743 cites W4213041519 @default.
- W2998188743 doi "https://doi.org/10.1016/j.apenergy.2019.114259" @default.
- W2998188743 hasPublicationYear "2020" @default.
- W2998188743 type Work @default.
- W2998188743 sameAs 2998188743 @default.
- W2998188743 citedByCount "104" @default.
- W2998188743 countsByYear W29981887432020 @default.
- W2998188743 countsByYear W29981887432021 @default.
- W2998188743 countsByYear W29981887432022 @default.
- W2998188743 countsByYear W29981887432023 @default.
- W2998188743 crossrefType "journal-article" @default.
- W2998188743 hasAuthorship W2998188743A5006387641 @default.
- W2998188743 hasAuthorship W2998188743A5028132895 @default.
- W2998188743 hasAuthorship W2998188743A5039778502 @default.
- W2998188743 hasAuthorship W2998188743A5061972088 @default.
- W2998188743 hasAuthorship W2998188743A5074423713 @default.
- W2998188743 hasAuthorship W2998188743A5076202709 @default.
- W2998188743 hasAuthorship W2998188743A5079367813 @default.
- W2998188743 hasConcept C107673813 @default.
- W2998188743 hasConcept C114289077 @default.
- W2998188743 hasConcept C119857082 @default.
- W2998188743 hasConcept C122282355 @default.
- W2998188743 hasConcept C153294291 @default.
- W2998188743 hasConcept C154945302 @default.
- W2998188743 hasConcept C160234255 @default.
- W2998188743 hasConcept C161067210 @default.
- W2998188743 hasConcept C205649164 @default.
- W2998188743 hasConcept C33724603 @default.
- W2998188743 hasConcept C41008148 @default.
- W2998188743 hasConcept C49937458 @default.
- W2998188743 hasConceptScore W2998188743C107673813 @default.
- W2998188743 hasConceptScore W2998188743C114289077 @default.
- W2998188743 hasConceptScore W2998188743C119857082 @default.
- W2998188743 hasConceptScore W2998188743C122282355 @default.
- W2998188743 hasConceptScore W2998188743C153294291 @default.
- W2998188743 hasConceptScore W2998188743C154945302 @default.
- W2998188743 hasConceptScore W2998188743C160234255 @default.
- W2998188743 hasConceptScore W2998188743C161067210 @default.
- W2998188743 hasConceptScore W2998188743C205649164 @default.
- W2998188743 hasConceptScore W2998188743C33724603 @default.
- W2998188743 hasConceptScore W2998188743C41008148 @default.
- W2998188743 hasConceptScore W2998188743C49937458 @default.
- W2998188743 hasFunder F4320321001 @default.
- W2998188743 hasLocation W29981887431 @default.
- W2998188743 hasOpenAccess W2998188743 @default.
- W2998188743 hasPrimaryLocation W29981887431 @default.
- W2998188743 hasRelatedWork W132374903 @default.