Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998201623> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2998201623 endingPage "326" @default.
- W2998201623 startingPage "313" @default.
- W2998201623 abstract "Reverse engineering is an important tool in mitigating vulnerabilities in binaries. As a lot of software is developed in object-oriented languages, reverse engineering of object-oriented code is of critical importance. One of the major hurdles in reverse engineering binaries compiled from object-oriented code is the use of dynamic dispatch. In the absence of debug information, any dynamic dispatch may seem to jump to many possible targets, posing a significant challenge to a reverse engineer trying to track the program flow. We present a novel technique that allows us to statically determine the likely targets of virtual function calls. Our technique uses object tracelets – statically constructed sequences of operations performed on an object – to capture potential runtime behaviors of the object. Our analysis automatically pre-labels some of the object tracelets by relying on instances where the type of an object is known. The resulting type-labeled tracelets are then used to train a statistical language model (SLM) for each type.We then use the resulting ensemble of SLMs over unlabeled tracelets to generate a ranking of their most likely types, from which we deduce the likely targets of dynamic dispatches.We have implemented our technique and evaluated it over real-world C++ binaries. Our evaluation shows that when there are multiple alternative targets, our approach can drastically reduce the number of targets that have to be considered by a reverse engineer." @default.
- W2998201623 created "2020-01-10" @default.
- W2998201623 creator A5005318961 @default.
- W2998201623 creator A5006542273 @default.
- W2998201623 creator A5072621201 @default.
- W2998201623 date "2016-01-11" @default.
- W2998201623 modified "2023-10-18" @default.
- W2998201623 title "Estimating types in binaries using predictive modeling" @default.
- W2998201623 cites W1480643256 @default.
- W2998201623 cites W1517398235 @default.
- W2998201623 cites W1583425800 @default.
- W2998201623 cites W2004633100 @default.
- W2998201623 cites W2010204191 @default.
- W2998201623 cites W2024818492 @default.
- W2998201623 cites W2030906223 @default.
- W2998201623 cites W2051600169 @default.
- W2998201623 cites W2061958896 @default.
- W2998201623 cites W2097927681 @default.
- W2998201623 cites W2107313432 @default.
- W2998201623 cites W2111094262 @default.
- W2998201623 cites W2112481005 @default.
- W2998201623 cites W2112725702 @default.
- W2998201623 cites W2114596616 @default.
- W2998201623 cites W2121950477 @default.
- W2998201623 cites W2131135493 @default.
- W2998201623 cites W2131195907 @default.
- W2998201623 cites W2141097255 @default.
- W2998201623 cites W2143861926 @default.
- W2998201623 cites W2146950091 @default.
- W2998201623 cites W2154021641 @default.
- W2998201623 cites W2156981320 @default.
- W2998201623 cites W2163643934 @default.
- W2998201623 cites W22973579 @default.
- W2998201623 cites W3138739399 @default.
- W2998201623 cites W4206192903 @default.
- W2998201623 cites W4213139332 @default.
- W2998201623 cites W4238295473 @default.
- W2998201623 cites W2183235533 @default.
- W2998201623 doi "https://doi.org/10.1145/2914770.2837674" @default.
- W2998201623 hasPublicationYear "2016" @default.
- W2998201623 type Work @default.
- W2998201623 sameAs 2998201623 @default.
- W2998201623 citedByCount "2" @default.
- W2998201623 countsByYear W29982016232019 @default.
- W2998201623 countsByYear W29982016232021 @default.
- W2998201623 crossrefType "journal-article" @default.
- W2998201623 hasAuthorship W2998201623A5005318961 @default.
- W2998201623 hasAuthorship W2998201623A5006542273 @default.
- W2998201623 hasAuthorship W2998201623A5072621201 @default.
- W2998201623 hasConcept C154945302 @default.
- W2998201623 hasConcept C168065819 @default.
- W2998201623 hasConcept C177264268 @default.
- W2998201623 hasConcept C189430467 @default.
- W2998201623 hasConcept C199360897 @default.
- W2998201623 hasConcept C207850805 @default.
- W2998201623 hasConcept C2776760102 @default.
- W2998201623 hasConcept C2781238097 @default.
- W2998201623 hasConcept C41008148 @default.
- W2998201623 hasConcept C43126263 @default.
- W2998201623 hasConcept C73752529 @default.
- W2998201623 hasConceptScore W2998201623C154945302 @default.
- W2998201623 hasConceptScore W2998201623C168065819 @default.
- W2998201623 hasConceptScore W2998201623C177264268 @default.
- W2998201623 hasConceptScore W2998201623C189430467 @default.
- W2998201623 hasConceptScore W2998201623C199360897 @default.
- W2998201623 hasConceptScore W2998201623C207850805 @default.
- W2998201623 hasConceptScore W2998201623C2776760102 @default.
- W2998201623 hasConceptScore W2998201623C2781238097 @default.
- W2998201623 hasConceptScore W2998201623C41008148 @default.
- W2998201623 hasConceptScore W2998201623C43126263 @default.
- W2998201623 hasConceptScore W2998201623C73752529 @default.
- W2998201623 hasIssue "1" @default.
- W2998201623 hasLocation W29982016231 @default.
- W2998201623 hasOpenAccess W2998201623 @default.
- W2998201623 hasPrimaryLocation W29982016231 @default.
- W2998201623 hasRelatedWork W2115307282 @default.
- W2998201623 hasRelatedWork W2135396778 @default.
- W2998201623 hasRelatedWork W2142934822 @default.
- W2998201623 hasRelatedWork W2295367909 @default.
- W2998201623 hasRelatedWork W2320643042 @default.
- W2998201623 hasRelatedWork W2377542611 @default.
- W2998201623 hasRelatedWork W2488164788 @default.
- W2998201623 hasRelatedWork W2998201623 @default.
- W2998201623 hasRelatedWork W3110421725 @default.
- W2998201623 hasRelatedWork W4233387348 @default.
- W2998201623 hasVolume "51" @default.
- W2998201623 isParatext "false" @default.
- W2998201623 isRetracted "false" @default.
- W2998201623 magId "2998201623" @default.
- W2998201623 workType "article" @default.