Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998222719> ?p ?o ?g. }
- W2998222719 endingPage "135" @default.
- W2998222719 startingPage "118" @default.
- W2998222719 abstract "The increasing availability of sensor data at machine tools makes automatic chatter detection algorithms a trending topic in metal cutting. Two prominent and advanced methods for feature extraction via signal decomposition are Wavelet Packet Transform (WPT) and Ensemble Empirical Mode Decomposition (EEMD). We apply these two methods to time series acquired from an acceleration sensor at the tool holder of a lathe. Different turning experiments with varying dynamic behavior of the machine tool structure were performed. We compare the performance of these two methods with Support Vector Machine (SVM), Logistic Regression, Random Forest Classification and Gradient Boosting combined with Recursive Feature Elimination (RFE). We also show that the common WPT-based approach of choosing wavelet packets with the highest energy ratios as representative features for chatter does not always result in packets that enclose the chatter frequency, thus reducing the classification accuracy. Further, we test the transfer learning capability of each of these methods by training the classifier on one of the cutting configurations and then testing it on the other cases. It is found that when training and testing on data from the same cutting configuration both methods yield high accuracies reaching in one of the cases as high as 94% and 95%, respectively, for WPT and EEMD. However, our experimental results show that EEMD can outperform WPT in transfer learning applications with accuracy of up to 95%." @default.
- W2998222719 created "2020-01-10" @default.
- W2998222719 creator A5030913569 @default.
- W2998222719 creator A5037506513 @default.
- W2998222719 creator A5084689976 @default.
- W2998222719 date "2020-01-01" @default.
- W2998222719 modified "2023-10-13" @default.
- W2998222719 title "On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition" @default.
- W2998222719 cites W1509889379 @default.
- W2998222719 cites W1971031650 @default.
- W2998222719 cites W1977594236 @default.
- W2998222719 cites W1977784344 @default.
- W2998222719 cites W1981976602 @default.
- W2998222719 cites W1984202013 @default.
- W2998222719 cites W1987306952 @default.
- W2998222719 cites W2004082566 @default.
- W2998222719 cites W2004147962 @default.
- W2998222719 cites W2004792575 @default.
- W2998222719 cites W2007221293 @default.
- W2998222719 cites W2013545890 @default.
- W2998222719 cites W2014391691 @default.
- W2998222719 cites W2016763624 @default.
- W2998222719 cites W2020089616 @default.
- W2998222719 cites W2036079977 @default.
- W2998222719 cites W2039196655 @default.
- W2998222719 cites W2041375223 @default.
- W2998222719 cites W2041509548 @default.
- W2998222719 cites W2049854151 @default.
- W2998222719 cites W2064247253 @default.
- W2998222719 cites W2069616380 @default.
- W2998222719 cites W2070493638 @default.
- W2998222719 cites W2072552873 @default.
- W2998222719 cites W2074259712 @default.
- W2998222719 cites W2075395275 @default.
- W2998222719 cites W2076536285 @default.
- W2998222719 cites W2076672082 @default.
- W2998222719 cites W2088064864 @default.
- W2998222719 cites W2088794999 @default.
- W2998222719 cites W2120390927 @default.
- W2998222719 cites W2134380836 @default.
- W2998222719 cites W2139212933 @default.
- W2998222719 cites W2143426320 @default.
- W2998222719 cites W2261059368 @default.
- W2998222719 cites W2292806638 @default.
- W2998222719 cites W2505714040 @default.
- W2998222719 cites W2539033431 @default.
- W2998222719 cites W2549790214 @default.
- W2998222719 cites W2743662531 @default.
- W2998222719 cites W2748761736 @default.
- W2998222719 cites W2753490802 @default.
- W2998222719 cites W2807056420 @default.
- W2998222719 cites W2809491575 @default.
- W2998222719 cites W2883106506 @default.
- W2998222719 cites W2911964244 @default.
- W2998222719 cites W3004732066 @default.
- W2998222719 cites W3144986342 @default.
- W2998222719 cites W1542659772 @default.
- W2998222719 doi "https://doi.org/10.1016/j.cirpj.2019.11.003" @default.
- W2998222719 hasPublicationYear "2020" @default.
- W2998222719 type Work @default.
- W2998222719 sameAs 2998222719 @default.
- W2998222719 citedByCount "48" @default.
- W2998222719 countsByYear W29982227192019 @default.
- W2998222719 countsByYear W29982227192020 @default.
- W2998222719 countsByYear W29982227192021 @default.
- W2998222719 countsByYear W29982227192022 @default.
- W2998222719 countsByYear W29982227192023 @default.
- W2998222719 crossrefType "journal-article" @default.
- W2998222719 hasAuthorship W2998222719A5030913569 @default.
- W2998222719 hasAuthorship W2998222719A5037506513 @default.
- W2998222719 hasAuthorship W2998222719A5084689976 @default.
- W2998222719 hasBestOaLocation W29982227191 @default.
- W2998222719 hasConcept C106131492 @default.
- W2998222719 hasConcept C119857082 @default.
- W2998222719 hasConcept C12267149 @default.
- W2998222719 hasConcept C127413603 @default.
- W2998222719 hasConcept C153180895 @default.
- W2998222719 hasConcept C154945302 @default.
- W2998222719 hasConcept C155777637 @default.
- W2998222719 hasConcept C169258074 @default.
- W2998222719 hasConcept C196216189 @default.
- W2998222719 hasConcept C25570617 @default.
- W2998222719 hasConcept C31972630 @default.
- W2998222719 hasConcept C41008148 @default.
- W2998222719 hasConcept C46686674 @default.
- W2998222719 hasConcept C47432892 @default.
- W2998222719 hasConcept C52622490 @default.
- W2998222719 hasConceptScore W2998222719C106131492 @default.
- W2998222719 hasConceptScore W2998222719C119857082 @default.
- W2998222719 hasConceptScore W2998222719C12267149 @default.
- W2998222719 hasConceptScore W2998222719C127413603 @default.
- W2998222719 hasConceptScore W2998222719C153180895 @default.
- W2998222719 hasConceptScore W2998222719C154945302 @default.
- W2998222719 hasConceptScore W2998222719C155777637 @default.
- W2998222719 hasConceptScore W2998222719C169258074 @default.
- W2998222719 hasConceptScore W2998222719C196216189 @default.
- W2998222719 hasConceptScore W2998222719C25570617 @default.
- W2998222719 hasConceptScore W2998222719C31972630 @default.