Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998315072> ?p ?o ?g. }
- W2998315072 endingPage "2746" @default.
- W2998315072 startingPage "2736" @default.
- W2998315072 abstract "The Data-Intensive Farm Management (DIFM) project works with participating farmers, using precision technology to inexpensively design and run randomized agronomic field trials on whole commercial farm fields, to provide data-based, site-specific farm input management guidance, thus providing economic and environmental benefits. This article lays out a conceptual framework used by the multidisciplinary DIFM research team to facilitate collaboration and then presents details of DIFM's procedures for what it calls on-farm precision experimentation (OFPE), which includes field trial design and implementation, data generation, processing, and management, and analysis. It is argued that DIFM's data and the agricultural “Big Data” currently being collected with remote and proximal sensors are complementary; that is, more of either increases the value of the other. In 2019, DIFM and affiliates conducted over 120 trials, ranging from 10 to 100 ha in size, on maize, wheat, soybeans, cotton, and barley in eight US states, Argentina, Brazil, and South Africa. The DIFM is developing cyberinfrastructure to “scale up” its activities, to permit researchers and crop consultants worldwide to work with farmers to conduct trials, then process and manage the data. In Addition, DIFM is in the early stages of developing a software system for semi-automatic data analytics, and a cloud-based farm management aid, the purpose of which is to facilitate conversations between agronomists and farmers about implementing data-driven input management decisions. The proposed framework allows researchers, agronomists, and farmers to carry out on-farm precision experimentation using novel digital tools. Core Ideas The Data-Intensive Farm Management project's on-farm trials can generate massive amounts varied managed input data. The Data-Intensive Farm Management project's data fill a gap in agricultural “Big Data,” to enable data-intensive crop management. The Data-Intensive Farm Management project's protocols support trial design, data processing and analysis. The Data-Intensive Farm Management project can be implemented by researchers, consultants, and farmers in diverse agronomic scenarios." @default.
- W2998315072 created "2020-01-10" @default.
- W2998315072 creator A5015213297 @default.
- W2998315072 creator A5018639820 @default.
- W2998315072 creator A5032867279 @default.
- W2998315072 creator A5039225589 @default.
- W2998315072 creator A5063309996 @default.
- W2998315072 creator A5069681118 @default.
- W2998315072 creator A5070156038 @default.
- W2998315072 creator A5086624935 @default.
- W2998315072 date "2019-11-01" @default.
- W2998315072 modified "2023-10-14" @default.
- W2998315072 title "The Data‐Intensive Farm Management Project: Changing Agronomic Research Through On‐Farm Precision Experimentation" @default.
- W2998315072 cites W1482456683 @default.
- W2998315072 cites W1487626871 @default.
- W2998315072 cites W1982934546 @default.
- W2998315072 cites W2007249893 @default.
- W2998315072 cites W2029989172 @default.
- W2998315072 cites W2030969749 @default.
- W2998315072 cites W2038491161 @default.
- W2998315072 cites W2040866820 @default.
- W2998315072 cites W2046162896 @default.
- W2998315072 cites W2046927613 @default.
- W2998315072 cites W2051248525 @default.
- W2998315072 cites W2060361755 @default.
- W2998315072 cites W2074034747 @default.
- W2998315072 cites W2084584977 @default.
- W2998315072 cites W2095138261 @default.
- W2998315072 cites W2137321294 @default.
- W2998315072 cites W2261433800 @default.
- W2998315072 cites W2275564778 @default.
- W2998315072 cites W2281208476 @default.
- W2998315072 cites W2496342964 @default.
- W2998315072 cites W2562197159 @default.
- W2998315072 cites W2566418221 @default.
- W2998315072 cites W2725897987 @default.
- W2998315072 cites W2913680823 @default.
- W2998315072 cites W4299737258 @default.
- W2998315072 cites W4301029089 @default.
- W2998315072 doi "https://doi.org/10.2134/agronj2019.03.0165" @default.
- W2998315072 hasPublicationYear "2019" @default.
- W2998315072 type Work @default.
- W2998315072 sameAs 2998315072 @default.
- W2998315072 citedByCount "42" @default.
- W2998315072 countsByYear W29983150722019 @default.
- W2998315072 countsByYear W29983150722020 @default.
- W2998315072 countsByYear W29983150722021 @default.
- W2998315072 countsByYear W29983150722022 @default.
- W2998315072 countsByYear W29983150722023 @default.
- W2998315072 crossrefType "journal-article" @default.
- W2998315072 hasAuthorship W2998315072A5015213297 @default.
- W2998315072 hasAuthorship W2998315072A5018639820 @default.
- W2998315072 hasAuthorship W2998315072A5032867279 @default.
- W2998315072 hasAuthorship W2998315072A5039225589 @default.
- W2998315072 hasAuthorship W2998315072A5063309996 @default.
- W2998315072 hasAuthorship W2998315072A5069681118 @default.
- W2998315072 hasAuthorship W2998315072A5070156038 @default.
- W2998315072 hasAuthorship W2998315072A5086624935 @default.
- W2998315072 hasBestOaLocation W29983150721 @default.
- W2998315072 hasConcept C107826830 @default.
- W2998315072 hasConcept C118518473 @default.
- W2998315072 hasConcept C120217122 @default.
- W2998315072 hasConcept C124101348 @default.
- W2998315072 hasConcept C127413603 @default.
- W2998315072 hasConcept C1668388 @default.
- W2998315072 hasConcept C166957645 @default.
- W2998315072 hasConcept C205649164 @default.
- W2998315072 hasConcept C2522767166 @default.
- W2998315072 hasConcept C2775917145 @default.
- W2998315072 hasConcept C2776397876 @default.
- W2998315072 hasConcept C2778755073 @default.
- W2998315072 hasConcept C2779565104 @default.
- W2998315072 hasConcept C39432304 @default.
- W2998315072 hasConcept C41008148 @default.
- W2998315072 hasConcept C58640448 @default.
- W2998315072 hasConcept C6557445 @default.
- W2998315072 hasConcept C75684735 @default.
- W2998315072 hasConcept C77088390 @default.
- W2998315072 hasConcept C79158427 @default.
- W2998315072 hasConcept C86803240 @default.
- W2998315072 hasConcept C88463610 @default.
- W2998315072 hasConceptScore W2998315072C107826830 @default.
- W2998315072 hasConceptScore W2998315072C118518473 @default.
- W2998315072 hasConceptScore W2998315072C120217122 @default.
- W2998315072 hasConceptScore W2998315072C124101348 @default.
- W2998315072 hasConceptScore W2998315072C127413603 @default.
- W2998315072 hasConceptScore W2998315072C1668388 @default.
- W2998315072 hasConceptScore W2998315072C166957645 @default.
- W2998315072 hasConceptScore W2998315072C205649164 @default.
- W2998315072 hasConceptScore W2998315072C2522767166 @default.
- W2998315072 hasConceptScore W2998315072C2775917145 @default.
- W2998315072 hasConceptScore W2998315072C2776397876 @default.
- W2998315072 hasConceptScore W2998315072C2778755073 @default.
- W2998315072 hasConceptScore W2998315072C2779565104 @default.
- W2998315072 hasConceptScore W2998315072C39432304 @default.
- W2998315072 hasConceptScore W2998315072C41008148 @default.
- W2998315072 hasConceptScore W2998315072C58640448 @default.
- W2998315072 hasConceptScore W2998315072C6557445 @default.