Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998315519> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2998315519 endingPage "101783" @default.
- W2998315519 startingPage "101783" @default.
- W2998315519 abstract "In the last few years, recurrent and continuous algorithms have became key factors in the solution of diverse pattern recognition problems. The main goal of this study is to introduce four classes of recurrent and continuous artificial neural networks (ANN) that can be implemented for pattern recognition of electrophysiological signals. Such networks are generally known as dynamic neural networks (DNN). The proposed DNN based pattern recognizer uses biosignals raw data as input. This processing method allows capturing the signal time dynamics, which is considered as an intrinsic characteristic of physiology signals. Therefore, recurrent and differential ANN structures were developed to construct different versions of dynamic automatic pattern recognizer. The first one describes the application of Recurrent Neural Networks (RNN) to enforce the biosignal analysis which evolves over time with a fixed sampling period. Three different DNNs with continuous dynamics are introduced. Differential neural network (DifNN) with the capability of learning the evolution of the signal in continuous time, a time-delay neural network (TDNN) for classification is implemented to consider the time-delayed characteristics of the electrophysiological signals and a complex valued neural network (CVNN) which considered the signals to be classified may be pre-processed with a frequency analysis technique. Two different databases of diverse physiological signals are used in this study to validate the application of dynamic neural networks. A first database considers electromiographic (EMG) signals which are tested using the DifNN, TDNN and CVNN. The second database includes gait in Parkinson's disease database signals which are used in the evaluation procedure of RNN. Two validation methods are used to justify the application of dynamic ANNs as pattern recognizer for the EMG activities and the health level classification of patients suffering from Parkinson's: generalization-regularization and the k-fold cross validation. The accuracy estimation and the confusion matrix evaluation confirm the superiority of the proposed approach compared to classical feed-forward ANN pattern recognizer. The particular case of the RNN is also implemented in a 32-bits micro-controller embedded device." @default.
- W2998315519 created "2020-01-10" @default.
- W2998315519 creator A5043901658 @default.
- W2998315519 creator A5079939647 @default.
- W2998315519 date "2020-03-01" @default.
- W2998315519 modified "2023-10-03" @default.
- W2998315519 title "Continuous and recurrent pattern dynamic neural networks recognition of electrophysiological signals" @default.
- W2998315519 cites W1498203006 @default.
- W2998315519 cites W1967999872 @default.
- W2998315519 cites W1977631350 @default.
- W2998315519 cites W1977707084 @default.
- W2998315519 cites W1986896318 @default.
- W2998315519 cites W1994314787 @default.
- W2998315519 cites W2004464976 @default.
- W2998315519 cites W2005936873 @default.
- W2998315519 cites W2013463953 @default.
- W2998315519 cites W2020174839 @default.
- W2998315519 cites W2023474564 @default.
- W2998315519 cites W2024313619 @default.
- W2998315519 cites W2031012011 @default.
- W2998315519 cites W2032246760 @default.
- W2998315519 cites W2041093427 @default.
- W2998315519 cites W2042763482 @default.
- W2998315519 cites W2052044303 @default.
- W2998315519 cites W2053599456 @default.
- W2998315519 cites W2054747732 @default.
- W2998315519 cites W2068483374 @default.
- W2998315519 cites W2076965449 @default.
- W2998315519 cites W2078866373 @default.
- W2998315519 cites W2086850342 @default.
- W2998315519 cites W2088071188 @default.
- W2998315519 cites W2099819031 @default.
- W2998315519 cites W2106110033 @default.
- W2998315519 cites W2109476790 @default.
- W2998315519 cites W2131659142 @default.
- W2998315519 cites W2156150820 @default.
- W2998315519 cites W2166608639 @default.
- W2998315519 cites W2345463153 @default.
- W2998315519 cites W2539353608 @default.
- W2998315519 cites W2590210438 @default.
- W2998315519 cites W2736081097 @default.
- W2998315519 cites W2741907166 @default.
- W2998315519 cites W2774049169 @default.
- W2998315519 cites W2800652770 @default.
- W2998315519 cites W71821949 @default.
- W2998315519 doi "https://doi.org/10.1016/j.bspc.2019.101783" @default.
- W2998315519 hasPublicationYear "2020" @default.
- W2998315519 type Work @default.
- W2998315519 sameAs 2998315519 @default.
- W2998315519 citedByCount "7" @default.
- W2998315519 countsByYear W29983155192020 @default.
- W2998315519 countsByYear W29983155192021 @default.
- W2998315519 countsByYear W29983155192022 @default.
- W2998315519 crossrefType "journal-article" @default.
- W2998315519 hasAuthorship W2998315519A5043901658 @default.
- W2998315519 hasAuthorship W2998315519A5079939647 @default.
- W2998315519 hasConcept C106131492 @default.
- W2998315519 hasConcept C147168706 @default.
- W2998315519 hasConcept C153180895 @default.
- W2998315519 hasConcept C154945302 @default.
- W2998315519 hasConcept C175202392 @default.
- W2998315519 hasConcept C199360897 @default.
- W2998315519 hasConcept C2779055241 @default.
- W2998315519 hasConcept C2779843651 @default.
- W2998315519 hasConcept C28490314 @default.
- W2998315519 hasConcept C31972630 @default.
- W2998315519 hasConcept C41008148 @default.
- W2998315519 hasConcept C50644808 @default.
- W2998315519 hasConceptScore W2998315519C106131492 @default.
- W2998315519 hasConceptScore W2998315519C147168706 @default.
- W2998315519 hasConceptScore W2998315519C153180895 @default.
- W2998315519 hasConceptScore W2998315519C154945302 @default.
- W2998315519 hasConceptScore W2998315519C175202392 @default.
- W2998315519 hasConceptScore W2998315519C199360897 @default.
- W2998315519 hasConceptScore W2998315519C2779055241 @default.
- W2998315519 hasConceptScore W2998315519C2779843651 @default.
- W2998315519 hasConceptScore W2998315519C28490314 @default.
- W2998315519 hasConceptScore W2998315519C31972630 @default.
- W2998315519 hasConceptScore W2998315519C41008148 @default.
- W2998315519 hasConceptScore W2998315519C50644808 @default.
- W2998315519 hasLocation W29983155191 @default.
- W2998315519 hasOpenAccess W2998315519 @default.
- W2998315519 hasPrimaryLocation W29983155191 @default.
- W2998315519 hasRelatedWork W1679636228 @default.
- W2998315519 hasRelatedWork W1975025300 @default.
- W2998315519 hasRelatedWork W2154859999 @default.
- W2998315519 hasRelatedWork W2329734087 @default.
- W2998315519 hasRelatedWork W2366803925 @default.
- W2998315519 hasRelatedWork W2386387936 @default.
- W2998315519 hasRelatedWork W2883762569 @default.
- W2998315519 hasRelatedWork W2950022897 @default.
- W2998315519 hasRelatedWork W3175075966 @default.
- W2998315519 hasRelatedWork W3177279640 @default.
- W2998315519 hasVolume "57" @default.
- W2998315519 isParatext "false" @default.
- W2998315519 isRetracted "false" @default.
- W2998315519 magId "2998315519" @default.
- W2998315519 workType "article" @default.