Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998358022> ?p ?o ?g. }
- W2998358022 endingPage "6996" @default.
- W2998358022 startingPage "6978" @default.
- W2998358022 abstract "Information extraction from historical maps represents a persistent challenge due to inferior graphical quality and the large data volume of digital map archives, which can hold thousands of digitized map sheets. Traditional map processing techniques typically rely on manually collected templates of the symbol of interest, and thus are not suitable for large-scale information extraction. In order to digitally preserve such large amounts of valuable retrospective geographic information, high levels of automation are required. Herein, we propose an automated machine-learning based framework to extract human settlement symbols, such as buildings and urban areas from historical topographic maps in the absence of training data, employing contemporary geospatial data as ancillary data to guide the collection of training samples. These samples are then used to train a convolutional neural network for semantic image segmentation, allowing for the extraction of human settlement patterns in an analysis-ready geospatial vector data format. We test our method on United States Geological Survey historical topographic maps published between 1893 and 1954. The results are promising, indicating high degrees of completeness in the extracted settlement features (i.e., recall of up to 0.96, F-measure of up to 0.79) and will guide the next steps to provide a fully automated operational approach for large-scale geographic feature extraction from a variety of historical map series. Moreover, the proposed framework provides a robust approach for the recognition of objects which are small in size, generalizable to many kinds of visual documents." @default.
- W2998358022 created "2020-01-10" @default.
- W2998358022 creator A5036895728 @default.
- W2998358022 creator A5045786247 @default.
- W2998358022 creator A5061358208 @default.
- W2998358022 creator A5087645671 @default.
- W2998358022 creator A5089542402 @default.
- W2998358022 date "2020-01-01" @default.
- W2998358022 modified "2023-10-12" @default.
- W2998358022 title "Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks" @default.
- W2998358022 cites W1565784015 @default.
- W2998358022 cites W1783315696 @default.
- W2998358022 cites W1903029394 @default.
- W2998358022 cites W1984279279 @default.
- W2998358022 cites W1994488211 @default.
- W2998358022 cites W2019960966 @default.
- W2998358022 cites W2049069062 @default.
- W2998358022 cites W2081424196 @default.
- W2998358022 cites W2083863337 @default.
- W2998358022 cites W2086437735 @default.
- W2998358022 cites W2086534570 @default.
- W2998358022 cites W2095600565 @default.
- W2998358022 cites W2109268594 @default.
- W2998358022 cites W2124386111 @default.
- W2998358022 cites W2147800946 @default.
- W2998358022 cites W2157825442 @default.
- W2998358022 cites W2160803144 @default.
- W2998358022 cites W2163352848 @default.
- W2998358022 cites W2295837698 @default.
- W2998358022 cites W2312456753 @default.
- W2998358022 cites W2345402120 @default.
- W2998358022 cites W2412588858 @default.
- W2998358022 cites W2412782625 @default.
- W2998358022 cites W2438305798 @default.
- W2998358022 cites W2499847654 @default.
- W2998358022 cites W2549822364 @default.
- W2998358022 cites W2565852484 @default.
- W2998358022 cites W2598666589 @default.
- W2998358022 cites W2605486153 @default.
- W2998358022 cites W2618530766 @default.
- W2998358022 cites W2746791238 @default.
- W2998358022 cites W2751475696 @default.
- W2998358022 cites W2768395416 @default.
- W2998358022 cites W2779637370 @default.
- W2998358022 cites W2787524449 @default.
- W2998358022 cites W2794301933 @default.
- W2998358022 cites W2795403693 @default.
- W2998358022 cites W2804841028 @default.
- W2998358022 cites W2808116774 @default.
- W2998358022 cites W2885372736 @default.
- W2998358022 cites W2886709694 @default.
- W2998358022 cites W2891211998 @default.
- W2998358022 cites W2905290611 @default.
- W2998358022 cites W2909368106 @default.
- W2998358022 cites W2914885528 @default.
- W2998358022 cites W2918844848 @default.
- W2998358022 cites W2919115771 @default.
- W2998358022 cites W2934408291 @default.
- W2998358022 cites W2952259003 @default.
- W2998358022 cites W2963881378 @default.
- W2998358022 cites W2989238059 @default.
- W2998358022 cites W3104341624 @default.
- W2998358022 cites W4232120593 @default.
- W2998358022 cites W4242322188 @default.
- W2998358022 cites W4250272066 @default.
- W2998358022 cites W584790758 @default.
- W2998358022 doi "https://doi.org/10.1109/access.2019.2963213" @default.
- W2998358022 hasPublicationYear "2020" @default.
- W2998358022 type Work @default.
- W2998358022 sameAs 2998358022 @default.
- W2998358022 citedByCount "25" @default.
- W2998358022 countsByYear W29983580222020 @default.
- W2998358022 countsByYear W29983580222021 @default.
- W2998358022 countsByYear W29983580222022 @default.
- W2998358022 countsByYear W29983580222023 @default.
- W2998358022 crossrefType "journal-article" @default.
- W2998358022 hasAuthorship W2998358022A5036895728 @default.
- W2998358022 hasAuthorship W2998358022A5045786247 @default.
- W2998358022 hasAuthorship W2998358022A5061358208 @default.
- W2998358022 hasAuthorship W2998358022A5087645671 @default.
- W2998358022 hasAuthorship W2998358022A5089542402 @default.
- W2998358022 hasBestOaLocation W29983580221 @default.
- W2998358022 hasConcept C127313418 @default.
- W2998358022 hasConcept C136764020 @default.
- W2998358022 hasConcept C143724316 @default.
- W2998358022 hasConcept C145097563 @default.
- W2998358022 hasConcept C151730666 @default.
- W2998358022 hasConcept C153180895 @default.
- W2998358022 hasConcept C154945302 @default.
- W2998358022 hasConcept C185592680 @default.
- W2998358022 hasConcept C2777063073 @default.
- W2998358022 hasConcept C41008148 @default.
- W2998358022 hasConcept C43617362 @default.
- W2998358022 hasConcept C4725764 @default.
- W2998358022 hasConcept C50644808 @default.
- W2998358022 hasConcept C52622490 @default.
- W2998358022 hasConcept C81363708 @default.
- W2998358022 hasConceptScore W2998358022C127313418 @default.