Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998367102> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2998367102 endingPage "216" @default.
- W2998367102 startingPage "199" @default.
- W2998367102 abstract "In this chapter we introduce continuous variants of the results from Chapter 6 in which ([mathsf {X}]^{aleph _0}), the family of countably infinite subsets of a fixed uncountable set X, is replaced with ( operatorname {mathrm {Sep}}(A)), the family of all separable substructures of a nonseparable metric structure A. The latter directed set is σ-directed, but not concretely represented, and in some cases only the approximate versions of results studied in Chapter 6 hold. These approximate versions are used to reflect properties of large C∗-algebras to their separable subalgebras and prove that algebras indistinguishable by any of the standard K-theoretic invariants are not isomorphic. The spaces of models—both discrete and metric—are studied in Section 7.1. Proposition 7.2.9 is a metric variant of the Pressing Down Lemma." @default.
- W2998367102 created "2020-01-10" @default.
- W2998367102 creator A5073593778 @default.
- W2998367102 date "2019-01-01" @default.
- W2998367102 modified "2023-09-25" @default.
- W2998367102 title "Infinitary Combinatorics II: The Metric Case" @default.
- W2998367102 cites W155966263 @default.
- W2998367102 cites W2003173901 @default.
- W2998367102 cites W2012901057 @default.
- W2998367102 cites W2131186646 @default.
- W2998367102 cites W2171661581 @default.
- W2998367102 cites W2325510855 @default.
- W2998367102 cites W2538829306 @default.
- W2998367102 cites W2619445242 @default.
- W2998367102 cites W4293395454 @default.
- W2998367102 doi "https://doi.org/10.1007/978-3-030-27093-3_7" @default.
- W2998367102 hasPublicationYear "2019" @default.
- W2998367102 type Work @default.
- W2998367102 sameAs 2998367102 @default.
- W2998367102 citedByCount "0" @default.
- W2998367102 crossrefType "book-chapter" @default.
- W2998367102 hasAuthorship W2998367102A5073593778 @default.
- W2998367102 hasConcept C114614502 @default.
- W2998367102 hasConcept C118615104 @default.
- W2998367102 hasConcept C127413603 @default.
- W2998367102 hasConcept C176217482 @default.
- W2998367102 hasConcept C21547014 @default.
- W2998367102 hasConcept C33923547 @default.
- W2998367102 hasConcept C41008148 @default.
- W2998367102 hasConcept C54643580 @default.
- W2998367102 hasConceptScore W2998367102C114614502 @default.
- W2998367102 hasConceptScore W2998367102C118615104 @default.
- W2998367102 hasConceptScore W2998367102C127413603 @default.
- W2998367102 hasConceptScore W2998367102C176217482 @default.
- W2998367102 hasConceptScore W2998367102C21547014 @default.
- W2998367102 hasConceptScore W2998367102C33923547 @default.
- W2998367102 hasConceptScore W2998367102C41008148 @default.
- W2998367102 hasConceptScore W2998367102C54643580 @default.
- W2998367102 hasLocation W29983671021 @default.
- W2998367102 hasOpenAccess W2998367102 @default.
- W2998367102 hasPrimaryLocation W29983671021 @default.
- W2998367102 hasRelatedWork W1978042415 @default.
- W2998367102 hasRelatedWork W1997397214 @default.
- W2998367102 hasRelatedWork W2017331178 @default.
- W2998367102 hasRelatedWork W2052579923 @default.
- W2998367102 hasRelatedWork W2054697996 @default.
- W2998367102 hasRelatedWork W2260035625 @default.
- W2998367102 hasRelatedWork W266446692 @default.
- W2998367102 hasRelatedWork W2795913521 @default.
- W2998367102 hasRelatedWork W2964072617 @default.
- W2998367102 hasRelatedWork W2976797620 @default.
- W2998367102 isParatext "false" @default.
- W2998367102 isRetracted "false" @default.
- W2998367102 magId "2998367102" @default.
- W2998367102 workType "book-chapter" @default.