Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998405852> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2998405852 endingPage "190" @default.
- W2998405852 startingPage "182" @default.
- W2998405852 abstract "Social media is now playing an important role in influencing people’s sentiments. It also helps analyze how people, particularly consumers, feel about a particular topic, product or an idea. One of the recent social media platforms that people use to express their thoughts is Twitter. Due to the fact that Turkish is an agglutinative language, its complexity makes it difficult for people to perform sentiment analysis. In this study, a sum of 13K Turkish tweets has been collected from Twitter using the Twitter API and their sentiments are being analyzed using machine learning classifiers. Random forests and support vector machines are the two kinds of classifiers that are adopted. Preprocessing methods were applied on the obtained data to remove links, numbers, punctuations and un-meaningful characters. After the preprocessing phase, unsuitable data have been removed and 10,500 out of the 13K downloaded dataset are taken as the main dataset. The datasets are classified to be either positive, negative or neutral based on their contents. The main dataset was converted to a stemmed dataset by removing stopwords, applying tokenization and also applying stemming on the dataset, respectively. A portion of 3,000 and 10,500 of the stemmed data with equal distribution from each class has been identified as the first dataset and second dataset to be used in the testing phase. Experimental results have shown that while support vector machines perform better when it comes to classifying negative and neutral stemmed data, random forests algorithm perform better in classifying positive stemmed data and thus a hybrid approach which consists of the hierarchical combination of random forest and support vector machines has also been developed and used to find the result of the data. Finally, the applied methodologies have been tested on both the first and the second dataset. It has been observed that while both support vector machines and random forest algorithms could not achieve an accuracy of up to 77% on the first and 72% on the second dataset, the developed hybrid approach achieve an accuracy of up to 86.4% and 82.8% on the first and second dataset, respectively." @default.
- W2998405852 created "2020-01-10" @default.
- W2998405852 creator A5044964347 @default.
- W2998405852 creator A5072965268 @default.
- W2998405852 date "2020-01-01" @default.
- W2998405852 modified "2023-09-25" @default.
- W2998405852 title "A Hybrid Approach for the Sentiment Analysis of Turkish Twitter Data" @default.
- W2998405852 cites W1488969938 @default.
- W2998405852 cites W1934242163 @default.
- W2998405852 cites W2064592000 @default.
- W2998405852 cites W2079281079 @default.
- W2998405852 cites W2229579736 @default.
- W2998405852 cites W2296734373 @default.
- W2998405852 cites W2419785541 @default.
- W2998405852 cites W2497567177 @default.
- W2998405852 cites W2592419886 @default.
- W2998405852 cites W2620411403 @default.
- W2998405852 cites W2626568907 @default.
- W2998405852 cites W2726719675 @default.
- W2998405852 cites W2793468577 @default.
- W2998405852 cites W2890896513 @default.
- W2998405852 cites W2901253474 @default.
- W2998405852 cites W3091014515 @default.
- W2998405852 cites W4205184193 @default.
- W2998405852 cites W4233906183 @default.
- W2998405852 cites W4234752074 @default.
- W2998405852 doi "https://doi.org/10.1007/978-3-030-36178-5_15" @default.
- W2998405852 hasPublicationYear "2020" @default.
- W2998405852 type Work @default.
- W2998405852 sameAs 2998405852 @default.
- W2998405852 citedByCount "8" @default.
- W2998405852 countsByYear W29984058522020 @default.
- W2998405852 countsByYear W29984058522021 @default.
- W2998405852 countsByYear W29984058522023 @default.
- W2998405852 crossrefType "book-chapter" @default.
- W2998405852 hasAuthorship W2998405852A5044964347 @default.
- W2998405852 hasAuthorship W2998405852A5072965268 @default.
- W2998405852 hasConcept C10551718 @default.
- W2998405852 hasConcept C119857082 @default.
- W2998405852 hasConcept C12267149 @default.
- W2998405852 hasConcept C124101348 @default.
- W2998405852 hasConcept C136764020 @default.
- W2998405852 hasConcept C138885662 @default.
- W2998405852 hasConcept C154945302 @default.
- W2998405852 hasConcept C169258074 @default.
- W2998405852 hasConcept C176982825 @default.
- W2998405852 hasConcept C204321447 @default.
- W2998405852 hasConcept C2777212361 @default.
- W2998405852 hasConcept C2781121862 @default.
- W2998405852 hasConcept C34736171 @default.
- W2998405852 hasConcept C41008148 @default.
- W2998405852 hasConcept C41895202 @default.
- W2998405852 hasConcept C518677369 @default.
- W2998405852 hasConcept C66402592 @default.
- W2998405852 hasConceptScore W2998405852C10551718 @default.
- W2998405852 hasConceptScore W2998405852C119857082 @default.
- W2998405852 hasConceptScore W2998405852C12267149 @default.
- W2998405852 hasConceptScore W2998405852C124101348 @default.
- W2998405852 hasConceptScore W2998405852C136764020 @default.
- W2998405852 hasConceptScore W2998405852C138885662 @default.
- W2998405852 hasConceptScore W2998405852C154945302 @default.
- W2998405852 hasConceptScore W2998405852C169258074 @default.
- W2998405852 hasConceptScore W2998405852C176982825 @default.
- W2998405852 hasConceptScore W2998405852C204321447 @default.
- W2998405852 hasConceptScore W2998405852C2777212361 @default.
- W2998405852 hasConceptScore W2998405852C2781121862 @default.
- W2998405852 hasConceptScore W2998405852C34736171 @default.
- W2998405852 hasConceptScore W2998405852C41008148 @default.
- W2998405852 hasConceptScore W2998405852C41895202 @default.
- W2998405852 hasConceptScore W2998405852C518677369 @default.
- W2998405852 hasConceptScore W2998405852C66402592 @default.
- W2998405852 hasLocation W29984058521 @default.
- W2998405852 hasOpenAccess W2998405852 @default.
- W2998405852 hasPrimaryLocation W29984058521 @default.
- W2998405852 hasRelatedWork W2801924399 @default.
- W2998405852 hasRelatedWork W2979979539 @default.
- W2998405852 hasRelatedWork W3004897296 @default.
- W2998405852 hasRelatedWork W3127425528 @default.
- W2998405852 hasRelatedWork W3195168932 @default.
- W2998405852 hasRelatedWork W4221021152 @default.
- W2998405852 hasRelatedWork W4307834015 @default.
- W2998405852 hasRelatedWork W4311106074 @default.
- W2998405852 hasRelatedWork W4312840273 @default.
- W2998405852 hasRelatedWork W4313150720 @default.
- W2998405852 isParatext "false" @default.
- W2998405852 isRetracted "false" @default.
- W2998405852 magId "2998405852" @default.
- W2998405852 workType "book-chapter" @default.