Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998416884> ?p ?o ?g. }
- W2998416884 endingPage "278" @default.
- W2998416884 startingPage "264" @default.
- W2998416884 abstract "Predicting short term traffic flow to improve traffic control is a research problem attracting increased attention over the past 30 years. With increasing number of traffic data acquisition equipments coming into usage, it provides an opportunity to use deep neural network (DNN) to predict short-term traffic flow. Behind its considerable success, the DNN is weighed down by some problems, and here we focus on: 1. how to justify the number of input nodes employed by DNN; 2. how to explain the causality between the historical spatiotemporal information and the future traffic condition. In this paper, we propose a deep polynomial neural network combined with a seasonal autoregressive integrated moving average model. The new model has superior predicting accuracy as well as enhanced clarity on the spatiotemporal relationship in its deep architecture. Experimental results indicate that the proposed model has better explanation power and higher accuracy compared with the LSTM based model." @default.
- W2998416884 created "2020-01-10" @default.
- W2998416884 creator A5017808266 @default.
- W2998416884 creator A5021751044 @default.
- W2998416884 creator A5026053703 @default.
- W2998416884 creator A5041149763 @default.
- W2998416884 creator A5051263495 @default.
- W2998416884 creator A5080123218 @default.
- W2998416884 creator A5087409698 @default.
- W2998416884 date "2020-05-01" @default.
- W2998416884 modified "2023-10-14" @default.
- W2998416884 title "An interpretable model for short term traffic flow prediction" @default.
- W2998416884 cites W1965186506 @default.
- W2998416884 cites W1967681834 @default.
- W2998416884 cites W1970094134 @default.
- W2998416884 cites W1970460434 @default.
- W2998416884 cites W1973943669 @default.
- W2998416884 cites W1975362087 @default.
- W2998416884 cites W1979575715 @default.
- W2998416884 cites W1980481765 @default.
- W2998416884 cites W1983615082 @default.
- W2998416884 cites W1999814123 @default.
- W2998416884 cites W1999996900 @default.
- W2998416884 cites W2009797633 @default.
- W2998416884 cites W2024558842 @default.
- W2998416884 cites W2026468197 @default.
- W2998416884 cites W2040297119 @default.
- W2998416884 cites W2049500727 @default.
- W2998416884 cites W2049952439 @default.
- W2998416884 cites W2057918527 @default.
- W2998416884 cites W2073640212 @default.
- W2998416884 cites W2076063813 @default.
- W2998416884 cites W2083238230 @default.
- W2998416884 cites W2090192376 @default.
- W2998416884 cites W2097498150 @default.
- W2998416884 cites W2119460626 @default.
- W2998416884 cites W2137393925 @default.
- W2998416884 cites W2145039203 @default.
- W2998416884 cites W2150152686 @default.
- W2998416884 cites W2160299137 @default.
- W2998416884 cites W2163150789 @default.
- W2998416884 cites W2573587735 @default.
- W2998416884 cites W2579495707 @default.
- W2998416884 cites W2593182953 @default.
- W2998416884 cites W2613331518 @default.
- W2998416884 cites W2657631929 @default.
- W2998416884 cites W2765511333 @default.
- W2998416884 cites W2772202358 @default.
- W2998416884 cites W2806382623 @default.
- W2998416884 doi "https://doi.org/10.1016/j.matcom.2019.12.013" @default.
- W2998416884 hasPublicationYear "2020" @default.
- W2998416884 type Work @default.
- W2998416884 sameAs 2998416884 @default.
- W2998416884 citedByCount "28" @default.
- W2998416884 countsByYear W29984168842020 @default.
- W2998416884 countsByYear W29984168842021 @default.
- W2998416884 countsByYear W29984168842022 @default.
- W2998416884 countsByYear W29984168842023 @default.
- W2998416884 crossrefType "journal-article" @default.
- W2998416884 hasAuthorship W2998416884A5017808266 @default.
- W2998416884 hasAuthorship W2998416884A5021751044 @default.
- W2998416884 hasAuthorship W2998416884A5026053703 @default.
- W2998416884 hasAuthorship W2998416884A5041149763 @default.
- W2998416884 hasAuthorship W2998416884A5051263495 @default.
- W2998416884 hasAuthorship W2998416884A5080123218 @default.
- W2998416884 hasAuthorship W2998416884A5087409698 @default.
- W2998416884 hasConcept C108583219 @default.
- W2998416884 hasConcept C119857082 @default.
- W2998416884 hasConcept C120665830 @default.
- W2998416884 hasConcept C121332964 @default.
- W2998416884 hasConcept C124101348 @default.
- W2998416884 hasConcept C149782125 @default.
- W2998416884 hasConcept C154945302 @default.
- W2998416884 hasConcept C159877910 @default.
- W2998416884 hasConcept C192209626 @default.
- W2998416884 hasConcept C207512268 @default.
- W2998416884 hasConcept C33923547 @default.
- W2998416884 hasConcept C38652104 @default.
- W2998416884 hasConcept C41008148 @default.
- W2998416884 hasConcept C50644808 @default.
- W2998416884 hasConcept C61797465 @default.
- W2998416884 hasConcept C62520636 @default.
- W2998416884 hasConcept C64357122 @default.
- W2998416884 hasConceptScore W2998416884C108583219 @default.
- W2998416884 hasConceptScore W2998416884C119857082 @default.
- W2998416884 hasConceptScore W2998416884C120665830 @default.
- W2998416884 hasConceptScore W2998416884C121332964 @default.
- W2998416884 hasConceptScore W2998416884C124101348 @default.
- W2998416884 hasConceptScore W2998416884C149782125 @default.
- W2998416884 hasConceptScore W2998416884C154945302 @default.
- W2998416884 hasConceptScore W2998416884C159877910 @default.
- W2998416884 hasConceptScore W2998416884C192209626 @default.
- W2998416884 hasConceptScore W2998416884C207512268 @default.
- W2998416884 hasConceptScore W2998416884C33923547 @default.
- W2998416884 hasConceptScore W2998416884C38652104 @default.
- W2998416884 hasConceptScore W2998416884C41008148 @default.
- W2998416884 hasConceptScore W2998416884C50644808 @default.
- W2998416884 hasConceptScore W2998416884C61797465 @default.