Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998431792> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2998431792 endingPage "113558" @default.
- W2998431792 startingPage "113558" @default.
- W2998431792 abstract "Without centralized frequency reuse coordination, unlicensed Wi-Fi spectrum users suffer from strong co-channel interference. The conventional Wi-Fi spectrum co-existence mechanism, carrier-sense multiple access with collision avoidance, temporarilly pauses the packet transmission for co-channel interference but still raises ambient noise level. In this paper, we propose the channel selection strategies for unlicensed Wi-Fi users in both the static case and the moving case. For static users, the strategy is to use channel switching implemented on a commercial off-the-shelf access point. This strategy senses the situation of current channel usage and searches for an idle channel if the currently used channel is occupied by other acess points. The designed strategy then manipulates the access point to switch to the idle channel. Experimental results show that the designed channel switching strategy outperforms the carrier-sense multiple access with collision avoidance with about 88% increment of the data throughput measured. However, the moving users may not accept the service outage due to the hardware channel switching. Therefore, a novel design of prediction based channel selection strategy without channel switching using deep learning is proposed, including the deep learning based channel prediction strategy and the time-to-live based algorithm. At each point on the trajectory of the moving user, the presented prediction strategy firstly predicts the three channels that have the strongest interference power with the deep neural network. The presented algorithm then rules out these interference-rich channels. Finally, a channel with lower interference can be found and selected for the moving users. Performance evaluation results show that along the trajectory, in compared with the conventional selection of non-overlapping channel, the presented channel selection strategy decreases up to about 36 dB in the interference power level and enhances up to about 37 dB in signal-to-interference-plus-noise ratio." @default.
- W2998431792 created "2020-01-10" @default.
- W2998431792 creator A5018348428 @default.
- W2998431792 creator A5030459254 @default.
- W2998431792 creator A5046657527 @default.
- W2998431792 creator A5047612384 @default.
- W2998431792 creator A5085911437 @default.
- W2998431792 date "2020-02-01" @default.
- W2998431792 modified "2023-10-01" @default.
- W2998431792 title "Deep learning approach on channel selection strategy for minimizing co-channel interference in unlicensed channels" @default.
- W2998431792 cites W2033245677 @default.
- W2998431792 cites W2049174253 @default.
- W2998431792 cites W2070601083 @default.
- W2998431792 cites W2397605099 @default.
- W2998431792 cites W2518869668 @default.
- W2998431792 cites W2751034643 @default.
- W2998431792 cites W2765948410 @default.
- W2998431792 cites W2790353832 @default.
- W2998431792 cites W2902135065 @default.
- W2998431792 cites W2903610530 @default.
- W2998431792 cites W2917932334 @default.
- W2998431792 cites W2962883549 @default.
- W2998431792 doi "https://doi.org/10.1016/j.microrel.2019.113558" @default.
- W2998431792 hasPublicationYear "2020" @default.
- W2998431792 type Work @default.
- W2998431792 sameAs 2998431792 @default.
- W2998431792 citedByCount "3" @default.
- W2998431792 countsByYear W29984317922021 @default.
- W2998431792 countsByYear W29984317922023 @default.
- W2998431792 crossrefType "journal-article" @default.
- W2998431792 hasAuthorship W2998431792A5018348428 @default.
- W2998431792 hasAuthorship W2998431792A5030459254 @default.
- W2998431792 hasAuthorship W2998431792A5046657527 @default.
- W2998431792 hasAuthorship W2998431792A5047612384 @default.
- W2998431792 hasAuthorship W2998431792A5085911437 @default.
- W2998431792 hasConcept C114237682 @default.
- W2998431792 hasConcept C127162648 @default.
- W2998431792 hasConcept C157764524 @default.
- W2998431792 hasConcept C31258907 @default.
- W2998431792 hasConcept C32022120 @default.
- W2998431792 hasConcept C41008148 @default.
- W2998431792 hasConcept C555944384 @default.
- W2998431792 hasConcept C76155785 @default.
- W2998431792 hasConceptScore W2998431792C114237682 @default.
- W2998431792 hasConceptScore W2998431792C127162648 @default.
- W2998431792 hasConceptScore W2998431792C157764524 @default.
- W2998431792 hasConceptScore W2998431792C31258907 @default.
- W2998431792 hasConceptScore W2998431792C32022120 @default.
- W2998431792 hasConceptScore W2998431792C41008148 @default.
- W2998431792 hasConceptScore W2998431792C555944384 @default.
- W2998431792 hasConceptScore W2998431792C76155785 @default.
- W2998431792 hasLocation W29984317921 @default.
- W2998431792 hasOpenAccess W2998431792 @default.
- W2998431792 hasPrimaryLocation W29984317921 @default.
- W2998431792 hasRelatedWork W2107509515 @default.
- W2998431792 hasRelatedWork W2129840061 @default.
- W2998431792 hasRelatedWork W2138908598 @default.
- W2998431792 hasRelatedWork W2147314329 @default.
- W2998431792 hasRelatedWork W2839835245 @default.
- W2998431792 hasRelatedWork W2947067459 @default.
- W2998431792 hasRelatedWork W2962769409 @default.
- W2998431792 hasRelatedWork W3022273582 @default.
- W2998431792 hasRelatedWork W4289754632 @default.
- W2998431792 hasRelatedWork W2186283781 @default.
- W2998431792 hasVolume "105" @default.
- W2998431792 isParatext "false" @default.
- W2998431792 isRetracted "false" @default.
- W2998431792 magId "2998431792" @default.
- W2998431792 workType "article" @default.