Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998509274> ?p ?o ?g. }
- W2998509274 abstract "We focus in this work on predicting the next location of mobile users by analyzing large data sets of the history of their movements. We make use of past location sequences to train a classification model that will be used to predict future locations. Contrary to traditional mobility prediction techniques based on Markovian models, we investigate the use of modern deep learning techniques such as the use of Convolutional Neural Networks (CNNs). Inspired by the word2vec embedding technique used for the next word prediction, we present a new method called loc2vec in which each location is encoded as a vector whereby the more often two locations cooccur in the location sequences, the closer their vectors will be. Using the vector representation, we divide long mobility sequences into several sub-sequences and use them to form Mobility Subsequence Matrices on which we run CNN classification which will be used later for the prediction. We run extensive testing and experimentation on a subset of a large real mobility trace database made publicly available through the CRAWDAD project. Our results show that loc2vec embedding and CNN-based prediction provide significant improvement in the next location prediction accuracy compared to state-of-the-art methods. We also show that transfer learning on existing pretrained CNN models provides further improvement over CNN models build from scratch on mobility data. We also show that our loc2vec-CNN model enhanced with transfer learning achieves better results than other variants including our other proposal onehot-CNN and existing Markovian models." @default.
- W2998509274 created "2020-01-10" @default.
- W2998509274 creator A5033148767 @default.
- W2998509274 creator A5044156309 @default.
- W2998509274 creator A5044514578 @default.
- W2998509274 creator A5087889937 @default.
- W2998509274 date "2019-10-01" @default.
- W2998509274 modified "2023-10-14" @default.
- W2998509274 title "Location Embedding and Deep Convolutional Neural Networks for Next Location Prediction" @default.
- W2998509274 cites W1964461063 @default.
- W2998509274 cites W1967635926 @default.
- W2998509274 cites W1977555135 @default.
- W2998509274 cites W1982300822 @default.
- W2998509274 cites W1996660370 @default.
- W2998509274 cites W2051176066 @default.
- W2998509274 cites W2094734495 @default.
- W2998509274 cites W2096667387 @default.
- W2998509274 cites W2097117768 @default.
- W2998509274 cites W2117539524 @default.
- W2998509274 cites W2145287260 @default.
- W2998509274 cites W2147854123 @default.
- W2998509274 cites W2163922914 @default.
- W2998509274 cites W2165145367 @default.
- W2998509274 cites W2169082916 @default.
- W2998509274 cites W2171267091 @default.
- W2998509274 cites W2183341477 @default.
- W2998509274 cites W2194775991 @default.
- W2998509274 cites W2299130925 @default.
- W2998509274 cites W2603341501 @default.
- W2998509274 cites W2619315488 @default.
- W2998509274 cites W2751841560 @default.
- W2998509274 cites W2919115771 @default.
- W2998509274 cites W2963446712 @default.
- W2998509274 cites W2963850840 @default.
- W2998509274 cites W2964296212 @default.
- W2998509274 cites W4244906015 @default.
- W2998509274 doi "https://doi.org/10.1109/lcnsymposium47956.2019.9000680" @default.
- W2998509274 hasPublicationYear "2019" @default.
- W2998509274 type Work @default.
- W2998509274 sameAs 2998509274 @default.
- W2998509274 citedByCount "9" @default.
- W2998509274 countsByYear W29985092742020 @default.
- W2998509274 countsByYear W29985092742022 @default.
- W2998509274 countsByYear W29985092742023 @default.
- W2998509274 crossrefType "proceedings-article" @default.
- W2998509274 hasAuthorship W2998509274A5033148767 @default.
- W2998509274 hasAuthorship W2998509274A5044156309 @default.
- W2998509274 hasAuthorship W2998509274A5044514578 @default.
- W2998509274 hasAuthorship W2998509274A5087889937 @default.
- W2998509274 hasBestOaLocation W29985092742 @default.
- W2998509274 hasConcept C108583219 @default.
- W2998509274 hasConcept C119857082 @default.
- W2998509274 hasConcept C120665830 @default.
- W2998509274 hasConcept C121332964 @default.
- W2998509274 hasConcept C124101348 @default.
- W2998509274 hasConcept C138885662 @default.
- W2998509274 hasConcept C150899416 @default.
- W2998509274 hasConcept C153180895 @default.
- W2998509274 hasConcept C154945302 @default.
- W2998509274 hasConcept C192209626 @default.
- W2998509274 hasConcept C23224414 @default.
- W2998509274 hasConcept C2776461190 @default.
- W2998509274 hasConcept C2777462759 @default.
- W2998509274 hasConcept C41008148 @default.
- W2998509274 hasConcept C41608201 @default.
- W2998509274 hasConcept C41895202 @default.
- W2998509274 hasConcept C59404180 @default.
- W2998509274 hasConcept C75291252 @default.
- W2998509274 hasConcept C81363708 @default.
- W2998509274 hasConceptScore W2998509274C108583219 @default.
- W2998509274 hasConceptScore W2998509274C119857082 @default.
- W2998509274 hasConceptScore W2998509274C120665830 @default.
- W2998509274 hasConceptScore W2998509274C121332964 @default.
- W2998509274 hasConceptScore W2998509274C124101348 @default.
- W2998509274 hasConceptScore W2998509274C138885662 @default.
- W2998509274 hasConceptScore W2998509274C150899416 @default.
- W2998509274 hasConceptScore W2998509274C153180895 @default.
- W2998509274 hasConceptScore W2998509274C154945302 @default.
- W2998509274 hasConceptScore W2998509274C192209626 @default.
- W2998509274 hasConceptScore W2998509274C23224414 @default.
- W2998509274 hasConceptScore W2998509274C2776461190 @default.
- W2998509274 hasConceptScore W2998509274C2777462759 @default.
- W2998509274 hasConceptScore W2998509274C41008148 @default.
- W2998509274 hasConceptScore W2998509274C41608201 @default.
- W2998509274 hasConceptScore W2998509274C41895202 @default.
- W2998509274 hasConceptScore W2998509274C59404180 @default.
- W2998509274 hasConceptScore W2998509274C75291252 @default.
- W2998509274 hasConceptScore W2998509274C81363708 @default.
- W2998509274 hasLocation W29985092741 @default.
- W2998509274 hasLocation W29985092742 @default.
- W2998509274 hasLocation W29985092743 @default.
- W2998509274 hasLocation W29985092744 @default.
- W2998509274 hasOpenAccess W2998509274 @default.
- W2998509274 hasPrimaryLocation W29985092741 @default.
- W2998509274 hasRelatedWork W2770162183 @default.
- W2998509274 hasRelatedWork W2798009317 @default.
- W2998509274 hasRelatedWork W2946409105 @default.
- W2998509274 hasRelatedWork W2985392712 @default.
- W2998509274 hasRelatedWork W2998070955 @default.
- W2998509274 hasRelatedWork W3133567596 @default.