Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998583340> ?p ?o ?g. }
- W2998583340 endingPage "585" @default.
- W2998583340 startingPage "575" @default.
- W2998583340 abstract "This article presents a solution for fatigue recognition through a new deep learning model that has a characteristic input of the power spectrum of an electroencephalogram (EEG) signal. First, four rhythms are obtained through the designed FIR filters, and the curve areas of their power spectrum density are coupled into four fatigue indicators. Second, a deep sparse contractive autoencoder network is proposed to learn more local fatigue characteristics, and the recognition results of pilots mental fatigue status are given. Compared with the state-of-the-art models, the results show that our model has good learning performance in extracting local features and fatigue status detection." @default.
- W2998583340 created "2020-01-10" @default.
- W2998583340 creator A5002375062 @default.
- W2998583340 creator A5021187014 @default.
- W2998583340 creator A5024767647 @default.
- W2998583340 creator A5071217995 @default.
- W2998583340 creator A5071708672 @default.
- W2998583340 creator A5073386986 @default.
- W2998583340 creator A5076430249 @default.
- W2998583340 creator A5079224867 @default.
- W2998583340 creator A5088781048 @default.
- W2998583340 date "2021-09-01" @default.
- W2998583340 modified "2023-10-15" @default.
- W2998583340 title "Detecting Fatigue Status of Pilots Based on Deep Learning Network Using EEG Signals" @default.
- W2998583340 cites W1741361249 @default.
- W2998583340 cites W1947251450 @default.
- W2998583340 cites W1969675008 @default.
- W2998583340 cites W1971681856 @default.
- W2998583340 cites W1986737286 @default.
- W2998583340 cites W1987324686 @default.
- W2998583340 cites W2001476450 @default.
- W2998583340 cites W2003087435 @default.
- W2998583340 cites W2013926069 @default.
- W2998583340 cites W2023133322 @default.
- W2998583340 cites W2031642592 @default.
- W2998583340 cites W2056824152 @default.
- W2998583340 cites W2059016985 @default.
- W2998583340 cites W2071832993 @default.
- W2998583340 cites W2076063813 @default.
- W2998583340 cites W2112118949 @default.
- W2998583340 cites W2134738818 @default.
- W2998583340 cites W2136922672 @default.
- W2998583340 cites W2146182319 @default.
- W2998583340 cites W2156330421 @default.
- W2998583340 cites W2162480886 @default.
- W2998583340 cites W2163922914 @default.
- W2998583340 cites W2299421909 @default.
- W2998583340 cites W2493031908 @default.
- W2998583340 cites W2507528282 @default.
- W2998583340 cites W2539315171 @default.
- W2998583340 cites W2558378728 @default.
- W2998583340 cites W2746870488 @default.
- W2998583340 cites W2764137849 @default.
- W2998583340 cites W2796101164 @default.
- W2998583340 cites W2903088819 @default.
- W2998583340 cites W2910798558 @default.
- W2998583340 cites W2915337192 @default.
- W2998583340 cites W2952116256 @default.
- W2998583340 cites W2971370265 @default.
- W2998583340 doi "https://doi.org/10.1109/tcds.2019.2963476" @default.
- W2998583340 hasPublicationYear "2021" @default.
- W2998583340 type Work @default.
- W2998583340 sameAs 2998583340 @default.
- W2998583340 citedByCount "40" @default.
- W2998583340 countsByYear W29985833402020 @default.
- W2998583340 countsByYear W29985833402021 @default.
- W2998583340 countsByYear W29985833402022 @default.
- W2998583340 countsByYear W29985833402023 @default.
- W2998583340 crossrefType "journal-article" @default.
- W2998583340 hasAuthorship W2998583340A5002375062 @default.
- W2998583340 hasAuthorship W2998583340A5021187014 @default.
- W2998583340 hasAuthorship W2998583340A5024767647 @default.
- W2998583340 hasAuthorship W2998583340A5071217995 @default.
- W2998583340 hasAuthorship W2998583340A5071708672 @default.
- W2998583340 hasAuthorship W2998583340A5073386986 @default.
- W2998583340 hasAuthorship W2998583340A5076430249 @default.
- W2998583340 hasAuthorship W2998583340A5079224867 @default.
- W2998583340 hasAuthorship W2998583340A5088781048 @default.
- W2998583340 hasConcept C101738243 @default.
- W2998583340 hasConcept C108583219 @default.
- W2998583340 hasConcept C118552586 @default.
- W2998583340 hasConcept C119857082 @default.
- W2998583340 hasConcept C153180895 @default.
- W2998583340 hasConcept C154945302 @default.
- W2998583340 hasConcept C15744967 @default.
- W2998583340 hasConcept C168110828 @default.
- W2998583340 hasConcept C199360897 @default.
- W2998583340 hasConcept C2779843651 @default.
- W2998583340 hasConcept C28490314 @default.
- W2998583340 hasConcept C41008148 @default.
- W2998583340 hasConcept C50644808 @default.
- W2998583340 hasConcept C522805319 @default.
- W2998583340 hasConcept C76155785 @default.
- W2998583340 hasConceptScore W2998583340C101738243 @default.
- W2998583340 hasConceptScore W2998583340C108583219 @default.
- W2998583340 hasConceptScore W2998583340C118552586 @default.
- W2998583340 hasConceptScore W2998583340C119857082 @default.
- W2998583340 hasConceptScore W2998583340C153180895 @default.
- W2998583340 hasConceptScore W2998583340C154945302 @default.
- W2998583340 hasConceptScore W2998583340C15744967 @default.
- W2998583340 hasConceptScore W2998583340C168110828 @default.
- W2998583340 hasConceptScore W2998583340C199360897 @default.
- W2998583340 hasConceptScore W2998583340C2779843651 @default.
- W2998583340 hasConceptScore W2998583340C28490314 @default.
- W2998583340 hasConceptScore W2998583340C41008148 @default.
- W2998583340 hasConceptScore W2998583340C50644808 @default.
- W2998583340 hasConceptScore W2998583340C522805319 @default.
- W2998583340 hasConceptScore W2998583340C76155785 @default.