Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998620327> ?p ?o ?g. }
- W2998620327 endingPage "84" @default.
- W2998620327 startingPage "77" @default.
- W2998620327 abstract "Many aspects of the study of protein folding and dynamics have been affected by the recent advances in machine learning. Methods for the prediction of protein structures from their sequences are now heavily based on machine learning tools. The way simulations are performed to explore the energy landscape of protein systems is also changing as force-fields are started to be designed by means of machine learning methods. These methods are also used to extract the essential information from large simulation datasets and to enhance the sampling of rare events such as folding/unfolding transitions. While significant challenges still need to be tackled, we expect these methods to play an important role on the study of protein folding and dynamics in the near future. We discuss here the recent advances on all these fronts and the questions that need to be addressed for machine learning approaches to become mainstream in protein simulation." @default.
- W2998620327 created "2020-01-10" @default.
- W2998620327 creator A5027026045 @default.
- W2998620327 creator A5055016850 @default.
- W2998620327 creator A5061903235 @default.
- W2998620327 date "2020-02-01" @default.
- W2998620327 modified "2023-10-17" @default.
- W2998620327 title "Machine learning for protein folding and dynamics" @default.
- W2998620327 cites W1489582602 @default.
- W2998620327 cites W1550166367 @default.
- W2998620327 cites W1976666280 @default.
- W2998620327 cites W1979762151 @default.
- W2998620327 cites W1986356457 @default.
- W2998620327 cites W1989544083 @default.
- W2998620327 cites W1992898397 @default.
- W2998620327 cites W1998239582 @default.
- W2998620327 cites W2008545402 @default.
- W2998620327 cites W2025444507 @default.
- W2998620327 cites W2025899185 @default.
- W2998620327 cites W2026737855 @default.
- W2998620327 cites W2033496784 @default.
- W2998620327 cites W2036239645 @default.
- W2998620327 cites W2037159954 @default.
- W2998620327 cites W2051864856 @default.
- W2998620327 cites W2060174126 @default.
- W2998620327 cites W2061042699 @default.
- W2998620327 cites W2063945425 @default.
- W2998620327 cites W2065864578 @default.
- W2998620327 cites W2085213650 @default.
- W2998620327 cites W2104467962 @default.
- W2998620327 cites W2104489082 @default.
- W2998620327 cites W2107867854 @default.
- W2998620327 cites W2117020466 @default.
- W2998620327 cites W2149655632 @default.
- W2998620327 cites W2171641243 @default.
- W2998620327 cites W2315297180 @default.
- W2998620327 cites W2317766861 @default.
- W2998620327 cites W2397367200 @default.
- W2998620327 cites W2541404351 @default.
- W2998620327 cites W2558395406 @default.
- W2998620327 cites W2574496196 @default.
- W2998620327 cites W2585152223 @default.
- W2998620327 cites W2588045673 @default.
- W2998620327 cites W2594341860 @default.
- W2998620327 cites W2595314721 @default.
- W2998620327 cites W2604971487 @default.
- W2998620327 cites W2606461366 @default.
- W2998620327 cites W2623055862 @default.
- W2998620327 cites W2766246727 @default.
- W2998620327 cites W2778051509 @default.
- W2998620327 cites W2781487518 @default.
- W2998620327 cites W2785813126 @default.
- W2998620327 cites W2800697076 @default.
- W2998620327 cites W2805679697 @default.
- W2998620327 cites W2883002027 @default.
- W2998620327 cites W2885841934 @default.
- W2998620327 cites W2901995873 @default.
- W2998620327 cites W2906950859 @default.
- W2998620327 cites W2949867299 @default.
- W2998620327 cites W2963383782 @default.
- W2998620327 cites W2963426504 @default.
- W2998620327 cites W2967606876 @default.
- W2998620327 cites W2972246420 @default.
- W2998620327 cites W3098321015 @default.
- W2998620327 cites W3099245682 @default.
- W2998620327 cites W3099423575 @default.
- W2998620327 cites W3100312042 @default.
- W2998620327 cites W3100810942 @default.
- W2998620327 doi "https://doi.org/10.1016/j.sbi.2019.12.005" @default.
- W2998620327 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31881449" @default.
- W2998620327 hasPublicationYear "2020" @default.
- W2998620327 type Work @default.
- W2998620327 sameAs 2998620327 @default.
- W2998620327 citedByCount "108" @default.
- W2998620327 countsByYear W29986203272012 @default.
- W2998620327 countsByYear W29986203272020 @default.
- W2998620327 countsByYear W29986203272021 @default.
- W2998620327 countsByYear W29986203272022 @default.
- W2998620327 countsByYear W29986203272023 @default.
- W2998620327 crossrefType "journal-article" @default.
- W2998620327 hasAuthorship W2998620327A5027026045 @default.
- W2998620327 hasAuthorship W2998620327A5055016850 @default.
- W2998620327 hasAuthorship W2998620327A5061903235 @default.
- W2998620327 hasBestOaLocation W29986203271 @default.
- W2998620327 hasConcept C119599485 @default.
- W2998620327 hasConcept C119621388 @default.
- W2998620327 hasConcept C119857082 @default.
- W2998620327 hasConcept C121332964 @default.
- W2998620327 hasConcept C127413603 @default.
- W2998620327 hasConcept C145912823 @default.
- W2998620327 hasConcept C147597530 @default.
- W2998620327 hasConcept C154945302 @default.
- W2998620327 hasConcept C18051474 @default.
- W2998620327 hasConcept C185592680 @default.
- W2998620327 hasConcept C204328495 @default.
- W2998620327 hasConcept C24890656 @default.
- W2998620327 hasConcept C2522767166 @default.
- W2998620327 hasConcept C2776545253 @default.