Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998675048> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2998675048 endingPage "11790" @default.
- W2998675048 startingPage "11782" @default.
- W2998675048 abstract "Semantic segmentation of surgical instruments plays a critical role in computer-assisted surgery. However, specular reflection and scale variation of instruments are likely to occur in the surgical environment, undesirably altering visual features of instruments, such as color and shape. These issues make semantic segmentation of surgical instruments more challenging. In this paper, a novel network, Pyramid Attention Aggregation Network, is proposed to aggregate multi-scale attentive features for surgical instruments. It contains two critical modules: Double Attention Module and Pyramid Upsampling Module. Specifically, the Double Attention Module includes two attention blocks (i.e., position attention block and channel attention block), which model semantic dependencies between positions and channels by capturing joint semantic information and global contexts, respectively. The attentive features generated by the Double Attention Module can distinguish target regions, contributing to solving the specular reflection issue. Moreover, the Pyramid Upsampling Module extracts local details and global contexts by aggregating multi-scale attentive features. It learns the shape and size features of surgical instruments in different receptive fields and thus addresses the scale variation issue. The proposed network achieves state-of-the-art performance on various datasets. It achieves a new record of 97.10% mean IOU on Cata7. Besides, it comes first in the MICCAI EndoVis Challenge 2017 with 9.90% increase on mean IOU." @default.
- W2998675048 created "2020-01-10" @default.
- W2998675048 creator A5005968946 @default.
- W2998675048 creator A5017546410 @default.
- W2998675048 creator A5033076846 @default.
- W2998675048 creator A5038613343 @default.
- W2998675048 creator A5038907015 @default.
- W2998675048 creator A5065679716 @default.
- W2998675048 creator A5069765960 @default.
- W2998675048 date "2020-04-03" @default.
- W2998675048 modified "2023-10-11" @default.
- W2998675048 title "Pyramid Attention Aggregation Network for Semantic Segmentation of Surgical Instruments" @default.
- W2998675048 doi "https://doi.org/10.1609/aaai.v34i07.6850" @default.
- W2998675048 hasPublicationYear "2020" @default.
- W2998675048 type Work @default.
- W2998675048 sameAs 2998675048 @default.
- W2998675048 citedByCount "22" @default.
- W2998675048 countsByYear W29986750482021 @default.
- W2998675048 countsByYear W29986750482022 @default.
- W2998675048 countsByYear W29986750482023 @default.
- W2998675048 crossrefType "journal-article" @default.
- W2998675048 hasAuthorship W2998675048A5005968946 @default.
- W2998675048 hasAuthorship W2998675048A5017546410 @default.
- W2998675048 hasAuthorship W2998675048A5033076846 @default.
- W2998675048 hasAuthorship W2998675048A5038613343 @default.
- W2998675048 hasAuthorship W2998675048A5038907015 @default.
- W2998675048 hasAuthorship W2998675048A5065679716 @default.
- W2998675048 hasAuthorship W2998675048A5069765960 @default.
- W2998675048 hasBestOaLocation W29986750481 @default.
- W2998675048 hasConcept C110384440 @default.
- W2998675048 hasConcept C115961682 @default.
- W2998675048 hasConcept C118381688 @default.
- W2998675048 hasConcept C120665830 @default.
- W2998675048 hasConcept C121332964 @default.
- W2998675048 hasConcept C142575187 @default.
- W2998675048 hasConcept C153180895 @default.
- W2998675048 hasConcept C154945302 @default.
- W2998675048 hasConcept C205649164 @default.
- W2998675048 hasConcept C2524010 @default.
- W2998675048 hasConcept C2777210771 @default.
- W2998675048 hasConcept C2778755073 @default.
- W2998675048 hasConcept C31972630 @default.
- W2998675048 hasConcept C33923547 @default.
- W2998675048 hasConcept C41008148 @default.
- W2998675048 hasConcept C58640448 @default.
- W2998675048 hasConcept C62520636 @default.
- W2998675048 hasConcept C89600930 @default.
- W2998675048 hasConceptScore W2998675048C110384440 @default.
- W2998675048 hasConceptScore W2998675048C115961682 @default.
- W2998675048 hasConceptScore W2998675048C118381688 @default.
- W2998675048 hasConceptScore W2998675048C120665830 @default.
- W2998675048 hasConceptScore W2998675048C121332964 @default.
- W2998675048 hasConceptScore W2998675048C142575187 @default.
- W2998675048 hasConceptScore W2998675048C153180895 @default.
- W2998675048 hasConceptScore W2998675048C154945302 @default.
- W2998675048 hasConceptScore W2998675048C205649164 @default.
- W2998675048 hasConceptScore W2998675048C2524010 @default.
- W2998675048 hasConceptScore W2998675048C2777210771 @default.
- W2998675048 hasConceptScore W2998675048C2778755073 @default.
- W2998675048 hasConceptScore W2998675048C31972630 @default.
- W2998675048 hasConceptScore W2998675048C33923547 @default.
- W2998675048 hasConceptScore W2998675048C41008148 @default.
- W2998675048 hasConceptScore W2998675048C58640448 @default.
- W2998675048 hasConceptScore W2998675048C62520636 @default.
- W2998675048 hasConceptScore W2998675048C89600930 @default.
- W2998675048 hasIssue "07" @default.
- W2998675048 hasLocation W29986750481 @default.
- W2998675048 hasOpenAccess W2998675048 @default.
- W2998675048 hasPrimaryLocation W29986750481 @default.
- W2998675048 hasRelatedWork W1669643531 @default.
- W2998675048 hasRelatedWork W1982826852 @default.
- W2998675048 hasRelatedWork W2005437358 @default.
- W2998675048 hasRelatedWork W2008656436 @default.
- W2998675048 hasRelatedWork W2023558673 @default.
- W2998675048 hasRelatedWork W2110230079 @default.
- W2998675048 hasRelatedWork W2134924024 @default.
- W2998675048 hasRelatedWork W2517104666 @default.
- W2998675048 hasRelatedWork W2613186388 @default.
- W2998675048 hasRelatedWork W1967061043 @default.
- W2998675048 hasVolume "34" @default.
- W2998675048 isParatext "false" @default.
- W2998675048 isRetracted "false" @default.
- W2998675048 magId "2998675048" @default.
- W2998675048 workType "article" @default.