Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998785664> ?p ?o ?g. }
- W2998785664 endingPage "102160" @default.
- W2998785664 startingPage "102160" @default.
- W2998785664 abstract "The trigeminal nerve (TGN) is the largest cranial nerve and can be involved in multiple inflammatory, compressive, ischemic or other pathologies. Currently, imaging-based approaches to identify the TGN mostly rely on T2-weighted magnetic resonance imaging (MRI), which provides localization of the cisternal portion of the TGN where the contrast between nerve and cerebrospinal fluid (CSF) is high enough to allow differentiation. The course of the TGN within the brainstem as well as anterior to the cisternal portion, however, is more difficult to display on traditional imaging sequences. An advanced imaging technique, diffusion MRI (dMRI), enables tracking of the trajectory of TGN fibers and has the potential to visualize anatomical regions of the TGN not seen on T2-weighted imaging. This may allow a more comprehensive assessment of the nerve in the context of pathology. To date, most work in TGN tracking has used clinical dMRI acquisitions with a b-value of 1000 s/mm2 and conventional diffusion tensor MRI (DTI) tractography methods. Though higher b-value acquisitions and multi-tensor tractography methods are known to be beneficial for tracking brain white matter fiber tracts, there have been no studies conducted to evaluate the performance of these advanced approaches on nerve tracking of the TGN, in particular on tracking different anatomical regions of the TGN. We compare TGN tracking performance using dMRI data with different b-values, in combination with both single- and multi-tensor tractography methods. Our goal is to assess the advantages and limitations of these different strategies for identifying the anatomical regions of the TGN. We proposed seven anatomical rating criteria including true and false positive structures, and we performed an expert rating study of over 1000 TGN visualizations, as follows. We tracked the TGN using high-quality dMRI data from 100 healthy adult subjects from the Human Connectome Project (HCP). TGN tracking performance was compared across dMRI acquisitions with b = 1000 s/mm2, b = 2000 s/mm2 and b = 3000 s/mm2, using single-tensor (1T) and two-tensor (2T) unscented Kalman filter (UKF) tractography. This resulted in a total of six tracking strategies. The TGN was identified using an anatomical region-of-interest (ROI) selection approach. First, in a subset of the dataset we identified ROIs that provided good TGN tracking performance across all tracking strategies. Using these ROIs, the TGN was then tracked in all subjects using the six tracking strategies. An expert rater (GX) visually assessed and scored each TGN based on seven anatomical judgment criteria. These criteria included the presence of multiple expected anatomical segments of the TGN (true positive structures), specifically branch-like structures, cisternal portion, mesencephalic trigeminal tract, and spinal cord tract of the TGN. False positive criteria included the presence of any fibers entering the temporal lobe, the inferior cerebellar peduncle, or the middle cerebellar peduncle. Expert rating scores were analyzed to compare TGN tracking performance across the six tracking strategies. Intra- and inter-rater validation was performed to assess the reliability of the expert TGN rating result. The TGN was selected using two anatomical ROIs (Meckel's Cave and cisternal portion of the TGN). The two-tensor tractography method had significantly better performance on identifying true positive structures, while generating more false positive streamlines in comparison to the single-tensor tractography method. TGN tracking performance was significantly different across the three b-values for almost all structures studied. Tracking performance was reported in terms of the percentage of subjects achieving each anatomical rating criterion. Tracking of the cisternal portion and branching structure of the TGN was generally successful, with the highest performance of over 98% using two-tensor tractography and b = 1000 or b = 2000. However, tracking the smaller mesencephalic and spinal cord tracts of the TGN was quite challenging (highest performance of 37.5% and 57.07%, using two-tensor tractography with b = 1000 and b = 2000, respectively). False positive connections to the temporal lobe (over 38% of subjects for all strategies) and cerebellar peduncles (100% of subjects for all strategies) were prevalent. High joint probability of agreement was obtained in the inter-rater (on average 83%) and intra-rater validation (on average 90%), showing a highly reliable expert rating result. Overall, the results of the study suggest that researchers and clinicians may benefit from tailoring their acquisition and tracking methodology to the specific anatomical portion of the TGN that is of the greatest interest. For example, tracking of branching structures and TGN-T2 overlap can be best achieved with a two-tensor model and an acquisition using b = 1000 or b = 2000. In general, b = 1000 and b = 2000 acquisitions provided the best-rated tracking results. Further research is needed to improve both sensitivity and specificity of the depiction of the TGN anatomy using dMRI." @default.
- W2998785664 created "2020-01-23" @default.
- W2998785664 creator A5010840761 @default.
- W2998785664 creator A5012263767 @default.
- W2998785664 creator A5012499268 @default.
- W2998785664 creator A5017824606 @default.
- W2998785664 creator A5022796764 @default.
- W2998785664 creator A5033173474 @default.
- W2998785664 creator A5037057278 @default.
- W2998785664 creator A5037506643 @default.
- W2998785664 creator A5053447705 @default.
- W2998785664 creator A5074448864 @default.
- W2998785664 creator A5082042615 @default.
- W2998785664 creator A5084944122 @default.
- W2998785664 date "2020-01-01" @default.
- W2998785664 modified "2023-10-14" @default.
- W2998785664 title "Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b-values and single- and multi-fiber tracking strategies" @default.
- W2998785664 cites W1133283280 @default.
- W2998785664 cites W1937594864 @default.
- W2998785664 cites W1963889958 @default.
- W2998785664 cites W1964802316 @default.
- W2998785664 cites W1980692842 @default.
- W2998785664 cites W1983208069 @default.
- W2998785664 cites W1991551948 @default.
- W2998785664 cites W1996097298 @default.
- W2998785664 cites W1999146687 @default.
- W2998785664 cites W2004497549 @default.
- W2998785664 cites W2020493781 @default.
- W2998785664 cites W2024729467 @default.
- W2998785664 cites W2031574006 @default.
- W2998785664 cites W2032877555 @default.
- W2998785664 cites W2049381901 @default.
- W2998785664 cites W2050602834 @default.
- W2998785664 cites W2053884965 @default.
- W2998785664 cites W2056189002 @default.
- W2998785664 cites W2061266457 @default.
- W2998785664 cites W2069442043 @default.
- W2998785664 cites W2070084561 @default.
- W2998785664 cites W2077248760 @default.
- W2998785664 cites W2080551460 @default.
- W2998785664 cites W2084113628 @default.
- W2998785664 cites W2090248339 @default.
- W2998785664 cites W2094148161 @default.
- W2998785664 cites W2094715106 @default.
- W2998785664 cites W2099795589 @default.
- W2998785664 cites W2111508341 @default.
- W2998785664 cites W2129930598 @default.
- W2998785664 cites W2130199747 @default.
- W2998785664 cites W2142900310 @default.
- W2998785664 cites W2143638918 @default.
- W2998785664 cites W2157134953 @default.
- W2998785664 cites W2167095726 @default.
- W2998785664 cites W2169407260 @default.
- W2998785664 cites W2175900216 @default.
- W2998785664 cites W2178761095 @default.
- W2998785664 cites W2222370159 @default.
- W2998785664 cites W2238818133 @default.
- W2998785664 cites W2330302509 @default.
- W2998785664 cites W2340542435 @default.
- W2998785664 cites W2340772677 @default.
- W2998785664 cites W2421930807 @default.
- W2998785664 cites W2551620403 @default.
- W2998785664 cites W2561430611 @default.
- W2998785664 cites W2573952469 @default.
- W2998785664 cites W2584032597 @default.
- W2998785664 cites W2588734108 @default.
- W2998785664 cites W2602641171 @default.
- W2998785664 cites W2625813974 @default.
- W2998785664 cites W2677983544 @default.
- W2998785664 cites W2754486396 @default.
- W2998785664 cites W2761140693 @default.
- W2998785664 cites W2766098209 @default.
- W2998785664 cites W2766639217 @default.
- W2998785664 cites W2782524589 @default.
- W2998785664 cites W2786604911 @default.
- W2998785664 cites W2801639927 @default.
- W2998785664 cites W2808875895 @default.
- W2998785664 cites W282372266 @default.
- W2998785664 cites W2889854269 @default.
- W2998785664 cites W2913661320 @default.
- W2998785664 cites W4235264120 @default.
- W2998785664 doi "https://doi.org/10.1016/j.nicl.2019.102160" @default.
- W2998785664 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6962690" @default.
- W2998785664 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31954337" @default.
- W2998785664 hasPublicationYear "2020" @default.
- W2998785664 type Work @default.
- W2998785664 sameAs 2998785664 @default.
- W2998785664 citedByCount "24" @default.
- W2998785664 countsByYear W29987856642020 @default.
- W2998785664 countsByYear W29987856642021 @default.
- W2998785664 countsByYear W29987856642022 @default.
- W2998785664 countsByYear W29987856642023 @default.
- W2998785664 crossrefType "journal-article" @default.
- W2998785664 hasAuthorship W2998785664A5010840761 @default.
- W2998785664 hasAuthorship W2998785664A5012263767 @default.
- W2998785664 hasAuthorship W2998785664A5012499268 @default.
- W2998785664 hasAuthorship W2998785664A5017824606 @default.
- W2998785664 hasAuthorship W2998785664A5022796764 @default.