Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998806725> ?p ?o ?g. }
- W2998806725 endingPage "441" @default.
- W2998806725 startingPage "425" @default.
- W2998806725 abstract "Purpose Better forecasting always leads to better management and planning of the operations. The container throughput data are complex and often have multiple seasonality. This makes it difficult to forecast accurately. The purpose of this paper is to forecast container throughput using deep learning methods and benchmark its performance over other traditional time-series methods. Design/methodology/approach In this study, long short-term memory (LSTM) networks are implemented to forecast container throughput. The container throughput data of the Port of Singapore are used for empirical analysis. The forecasting performance of the LSTM model is compared with seven different time-series forecasting methods, namely, autoregressive integrated moving average (ARIMA), simple exponential smoothing, Holt–Winter’s, error-trend-seasonality, trigonometric regressors (TBATS), neural network (NN) and ARIMA + NN. The relative error matrix is used to analyze the performance of the different models with respect to bias, accuracy and uncertainty. Findings The results showed that LSTM outperformed all other benchmark methods. From a statistical perspective, the Diebold–Mariano test is also conducted to further substantiate better forecasting performance of LSTM over other counterpart methods. Originality/value The proposed study is a contribution to the literature on the container throughput forecasting and adds value to the supply chain theory of forecasting. Second, this study explained the architecture of the deep-learning-based LSTM method and discussed in detail the steps to implement it." @default.
- W2998806725 created "2020-01-23" @default.
- W2998806725 creator A5004125306 @default.
- W2998806725 creator A5047358846 @default.
- W2998806725 creator A5060944656 @default.
- W2998806725 creator A5070396879 @default.
- W2998806725 date "2019-12-04" @default.
- W2998806725 modified "2023-10-16" @default.
- W2998806725 title "Forecasting container throughput with long short-term memory networks" @default.
- W2998806725 cites W1485859327 @default.
- W2998806725 cites W1977848391 @default.
- W2998806725 cites W1985664682 @default.
- W2998806725 cites W1991261837 @default.
- W2998806725 cites W2018672055 @default.
- W2998806725 cites W2034306338 @default.
- W2998806725 cites W2040679537 @default.
- W2998806725 cites W2044280558 @default.
- W2998806725 cites W2048665112 @default.
- W2998806725 cites W2063889236 @default.
- W2998806725 cites W2064675550 @default.
- W2998806725 cites W2081792944 @default.
- W2998806725 cites W2083164987 @default.
- W2998806725 cites W2087632795 @default.
- W2998806725 cites W2092624117 @default.
- W2998806725 cites W2095144670 @default.
- W2998806725 cites W2107878631 @default.
- W2998806725 cites W2109316012 @default.
- W2998806725 cites W2117014758 @default.
- W2998806725 cites W2122109421 @default.
- W2998806725 cites W2125257068 @default.
- W2998806725 cites W2154326182 @default.
- W2998806725 cites W2344597853 @default.
- W2998806725 cites W2472834878 @default.
- W2998806725 cites W2576854474 @default.
- W2998806725 cites W2624385633 @default.
- W2998806725 cites W2767126816 @default.
- W2998806725 cites W2791961911 @default.
- W2998806725 cites W2792326773 @default.
- W2998806725 cites W2804097284 @default.
- W2998806725 cites W2865675487 @default.
- W2998806725 cites W2888798257 @default.
- W2998806725 cites W2892748064 @default.
- W2998806725 cites W2896761929 @default.
- W2998806725 cites W2905238323 @default.
- W2998806725 cites W2911983765 @default.
- W2998806725 cites W2922329508 @default.
- W2998806725 cites W2940789762 @default.
- W2998806725 cites W2945007383 @default.
- W2998806725 cites W2949062675 @default.
- W2998806725 cites W2962996339 @default.
- W2998806725 cites W2966305977 @default.
- W2998806725 cites W2970658101 @default.
- W2998806725 cites W2037658461 @default.
- W2998806725 doi "https://doi.org/10.1108/imds-07-2019-0370" @default.
- W2998806725 hasPublicationYear "2019" @default.
- W2998806725 type Work @default.
- W2998806725 sameAs 2998806725 @default.
- W2998806725 citedByCount "28" @default.
- W2998806725 countsByYear W29988067252020 @default.
- W2998806725 countsByYear W29988067252021 @default.
- W2998806725 countsByYear W29988067252022 @default.
- W2998806725 countsByYear W29988067252023 @default.
- W2998806725 crossrefType "journal-article" @default.
- W2998806725 hasAuthorship W2998806725A5004125306 @default.
- W2998806725 hasAuthorship W2998806725A5047358846 @default.
- W2998806725 hasAuthorship W2998806725A5060944656 @default.
- W2998806725 hasAuthorship W2998806725A5070396879 @default.
- W2998806725 hasConcept C119857082 @default.
- W2998806725 hasConcept C124101348 @default.
- W2998806725 hasConcept C127413603 @default.
- W2998806725 hasConcept C13280743 @default.
- W2998806725 hasConcept C133710760 @default.
- W2998806725 hasConcept C151406439 @default.
- W2998806725 hasConcept C154945302 @default.
- W2998806725 hasConcept C157764524 @default.
- W2998806725 hasConcept C175706884 @default.
- W2998806725 hasConcept C185798385 @default.
- W2998806725 hasConcept C205649164 @default.
- W2998806725 hasConcept C24338571 @default.
- W2998806725 hasConcept C2781018962 @default.
- W2998806725 hasConcept C31972630 @default.
- W2998806725 hasConcept C41008148 @default.
- W2998806725 hasConcept C50644808 @default.
- W2998806725 hasConcept C555944384 @default.
- W2998806725 hasConcept C76155785 @default.
- W2998806725 hasConcept C78519656 @default.
- W2998806725 hasConceptScore W2998806725C119857082 @default.
- W2998806725 hasConceptScore W2998806725C124101348 @default.
- W2998806725 hasConceptScore W2998806725C127413603 @default.
- W2998806725 hasConceptScore W2998806725C13280743 @default.
- W2998806725 hasConceptScore W2998806725C133710760 @default.
- W2998806725 hasConceptScore W2998806725C151406439 @default.
- W2998806725 hasConceptScore W2998806725C154945302 @default.
- W2998806725 hasConceptScore W2998806725C157764524 @default.
- W2998806725 hasConceptScore W2998806725C175706884 @default.
- W2998806725 hasConceptScore W2998806725C185798385 @default.
- W2998806725 hasConceptScore W2998806725C205649164 @default.
- W2998806725 hasConceptScore W2998806725C24338571 @default.