Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998892016> ?p ?o ?g. }
- W2998892016 endingPage "126580" @default.
- W2998892016 startingPage "126580" @default.
- W2998892016 abstract "Trees play major roles in many aspects of urban life, supporting ecosystems, regulating temperature and soil hydrology, and even affecting human health. At the scale of the urban forest, the qualities of these individual trees become powerful tools for mitigating the effects of, and adapting to climate change and for this reason attempts to select the right tree for the right place has been a long-term research field. To date, most urban forestry practitioners rely upon specialist horticultural texts (the heuristic literature) to inform species selection whilst the majority of research is grounded in trait-based investigations into plant physiology (the experimental literature). However, both of these literature types have shortcomings: the experimental literature only addresses a small proportion of the plants that practitioners might be interested in whilst the data in the heuristic (obtained through practice) literature tends to be either too general or inconsistent. To overcome these problems we used big datasets of species distribution and climate (which we term the observational literature) in a case study genus to examine the climatic niches that species occupy in their natural range. We found that contrary to reports in the heuristic literature, Magnolia species vary significantly in their climatic adaptations, occupying specific niches that are constrained by trade-offs between water availability and energy. The results show that not only is ecotype matching between naturally-distributed populations and urban environments possible but that it may be more powerful and faster than traditional research. We anticipate that our findings could be used to rapidly screen the world’s woody flora and rapidly communicate evidence to nurseries and plant specifiers. Furthermore this research improves the potential for urban forests to contribute to global environmental challenges such as species migration and ex-situ conservation." @default.
- W2998892016 created "2020-01-23" @default.
- W2998892016 creator A5017961344 @default.
- W2998892016 creator A5018323416 @default.
- W2998892016 creator A5080271740 @default.
- W2998892016 creator A5089392433 @default.
- W2998892016 date "2020-02-01" @default.
- W2998892016 modified "2023-09-24" @default.
- W2998892016 title "Using big data to improve ecotype matching for Magnolias in urban forestry" @default.
- W2998892016 cites W1590790951 @default.
- W2998892016 cites W1951564719 @default.
- W2998892016 cites W1968276934 @default.
- W2998892016 cites W1979781012 @default.
- W2998892016 cites W2000811893 @default.
- W2998892016 cites W2002627353 @default.
- W2998892016 cites W2013555735 @default.
- W2998892016 cites W2027770944 @default.
- W2998892016 cites W2037623206 @default.
- W2998892016 cites W2077323071 @default.
- W2998892016 cites W2086075858 @default.
- W2998892016 cites W2086955441 @default.
- W2998892016 cites W2092001899 @default.
- W2998892016 cites W2097601813 @default.
- W2998892016 cites W2100622042 @default.
- W2998892016 cites W2101977959 @default.
- W2998892016 cites W2118295263 @default.
- W2998892016 cites W2127928904 @default.
- W2998892016 cites W2138921835 @default.
- W2998892016 cites W2138992234 @default.
- W2998892016 cites W2146782058 @default.
- W2998892016 cites W2149069564 @default.
- W2998892016 cites W2155596360 @default.
- W2998892016 cites W2162584119 @default.
- W2998892016 cites W2194526149 @default.
- W2998892016 cites W2200557314 @default.
- W2998892016 cites W2218052335 @default.
- W2998892016 cites W2280611282 @default.
- W2998892016 cites W2293668817 @default.
- W2998892016 cites W2301598824 @default.
- W2998892016 cites W2301936591 @default.
- W2998892016 cites W2420506151 @default.
- W2998892016 cites W2474005070 @default.
- W2998892016 cites W2503816995 @default.
- W2998892016 cites W2555574428 @default.
- W2998892016 cites W2604446619 @default.
- W2998892016 cites W2605522539 @default.
- W2998892016 cites W2740019692 @default.
- W2998892016 cites W2740618718 @default.
- W2998892016 cites W2750842042 @default.
- W2998892016 cites W2751943544 @default.
- W2998892016 cites W2753294252 @default.
- W2998892016 cites W2775909337 @default.
- W2998892016 cites W2784190543 @default.
- W2998892016 cites W2790484492 @default.
- W2998892016 cites W2885986956 @default.
- W2998892016 cites W2890361416 @default.
- W2998892016 cites W2896179748 @default.
- W2998892016 cites W2902964238 @default.
- W2998892016 cites W4233761421 @default.
- W2998892016 cites W828563690 @default.
- W2998892016 doi "https://doi.org/10.1016/j.ufug.2019.126580" @default.
- W2998892016 hasPublicationYear "2020" @default.
- W2998892016 type Work @default.
- W2998892016 sameAs 2998892016 @default.
- W2998892016 citedByCount "12" @default.
- W2998892016 countsByYear W29988920162020 @default.
- W2998892016 countsByYear W29988920162021 @default.
- W2998892016 countsByYear W29988920162022 @default.
- W2998892016 crossrefType "journal-article" @default.
- W2998892016 hasAuthorship W2998892016A5017961344 @default.
- W2998892016 hasAuthorship W2998892016A5018323416 @default.
- W2998892016 hasAuthorship W2998892016A5080271740 @default.
- W2998892016 hasAuthorship W2998892016A5089392433 @default.
- W2998892016 hasBestOaLocation W29988920162 @default.
- W2998892016 hasConcept C105795698 @default.
- W2998892016 hasConcept C10860467 @default.
- W2998892016 hasConcept C165064840 @default.
- W2998892016 hasConcept C18903297 @default.
- W2998892016 hasConcept C205649164 @default.
- W2998892016 hasConcept C2780977904 @default.
- W2998892016 hasConcept C33923547 @default.
- W2998892016 hasConcept C39432304 @default.
- W2998892016 hasConcept C54286561 @default.
- W2998892016 hasConcept C86803240 @default.
- W2998892016 hasConcept C97137747 @default.
- W2998892016 hasConceptScore W2998892016C105795698 @default.
- W2998892016 hasConceptScore W2998892016C10860467 @default.
- W2998892016 hasConceptScore W2998892016C165064840 @default.
- W2998892016 hasConceptScore W2998892016C18903297 @default.
- W2998892016 hasConceptScore W2998892016C205649164 @default.
- W2998892016 hasConceptScore W2998892016C2780977904 @default.
- W2998892016 hasConceptScore W2998892016C33923547 @default.
- W2998892016 hasConceptScore W2998892016C39432304 @default.
- W2998892016 hasConceptScore W2998892016C54286561 @default.
- W2998892016 hasConceptScore W2998892016C86803240 @default.
- W2998892016 hasConceptScore W2998892016C97137747 @default.
- W2998892016 hasLocation W29988920161 @default.
- W2998892016 hasLocation W29988920162 @default.