Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998899239> ?p ?o ?g. }
- W2998899239 endingPage "20190131" @default.
- W2998899239 startingPage "20190131" @default.
- W2998899239 abstract "The involvement of mineralized tissues in acid–base homeostasis was likely important in the evolution of terrestrial vertebrates. Extant reptiles encounter hypercapnia when submerged in water, but early tetrapods may have experienced hypercapnia on land due to their inefficient mode of lung ventilation (likely buccal pumping, as in extant amphibians). Extant amphibians rely on cutaneous carbon dioxide elimination on land, but early tetrapods were considerably larger forms, with an unfavourable surface area to volume ratio for such activity, and evidence of a thick integument. Consequently, they would have been at risk of acidosis on land, while many of them retained internal gills and would not have had a problem eliminating carbon dioxide in water. In extant tetrapods, dermal bone can function to buffer the blood during acidosis by releasing calcium and magnesium carbonates. This review explores the possible mechanisms of acid–base regulation in tetrapod evolution, focusing on heavily armoured, basal tetrapods of the Permo-Carboniferous, especially the physiological challenges associated with the transition to air-breathing, body size and the adoption of active lifestyles. We also consider the possible functions of dermal armour in later tetrapods, such as Triassic archosaurs, inferring palaeophysiology from both fossil record evidence and phylogenetic patterns, and propose a new hypothesis relating the archosaurian origins of the four-chambered heart and high systemic blood pressures to the perfusion of the osteoderms. This article is part of the theme issue ‘Vertebrate palaeophysiology’." @default.
- W2998899239 created "2020-01-23" @default.
- W2998899239 creator A5013166308 @default.
- W2998899239 creator A5015147030 @default.
- W2998899239 creator A5087297431 @default.
- W2998899239 date "2020-01-13" @default.
- W2998899239 modified "2023-09-26" @default.
- W2998899239 title "Palaeophysiology of pH regulation in tetrapods" @default.
- W2998899239 cites W1227015208 @default.
- W2998899239 cites W1483013858 @default.
- W2998899239 cites W1563915192 @default.
- W2998899239 cites W1569299054 @default.
- W2998899239 cites W1643368722 @default.
- W2998899239 cites W1886610385 @default.
- W2998899239 cites W1967671663 @default.
- W2998899239 cites W1970870749 @default.
- W2998899239 cites W1973654362 @default.
- W2998899239 cites W1974554774 @default.
- W2998899239 cites W1975498533 @default.
- W2998899239 cites W1976813254 @default.
- W2998899239 cites W1980710619 @default.
- W2998899239 cites W1981674167 @default.
- W2998899239 cites W1981795844 @default.
- W2998899239 cites W1982112634 @default.
- W2998899239 cites W1985437844 @default.
- W2998899239 cites W1989208479 @default.
- W2998899239 cites W1997288681 @default.
- W2998899239 cites W2003048259 @default.
- W2998899239 cites W2009094188 @default.
- W2998899239 cites W2015988511 @default.
- W2998899239 cites W2019207646 @default.
- W2998899239 cites W2022713968 @default.
- W2998899239 cites W2023733034 @default.
- W2998899239 cites W2027727042 @default.
- W2998899239 cites W2030637789 @default.
- W2998899239 cites W2035685173 @default.
- W2998899239 cites W2036845767 @default.
- W2998899239 cites W2039592421 @default.
- W2998899239 cites W2050158673 @default.
- W2998899239 cites W2054862141 @default.
- W2998899239 cites W2057550409 @default.
- W2998899239 cites W2058796852 @default.
- W2998899239 cites W2063671015 @default.
- W2998899239 cites W2063805196 @default.
- W2998899239 cites W2067758151 @default.
- W2998899239 cites W2070115344 @default.
- W2998899239 cites W2070618444 @default.
- W2998899239 cites W2072964636 @default.
- W2998899239 cites W2079925436 @default.
- W2998899239 cites W2082799859 @default.
- W2998899239 cites W2093430057 @default.
- W2998899239 cites W2105715196 @default.
- W2998899239 cites W2106021251 @default.
- W2998899239 cites W2107105129 @default.
- W2998899239 cites W2112641588 @default.
- W2998899239 cites W2114697853 @default.
- W2998899239 cites W2124383676 @default.
- W2998899239 cites W2128081828 @default.
- W2998899239 cites W2132338391 @default.
- W2998899239 cites W2134992869 @default.
- W2998899239 cites W2137140584 @default.
- W2998899239 cites W2139060949 @default.
- W2998899239 cites W2141169953 @default.
- W2998899239 cites W2141636714 @default.
- W2998899239 cites W2157704483 @default.
- W2998899239 cites W2158062345 @default.
- W2998899239 cites W2163842788 @default.
- W2998899239 cites W2169785351 @default.
- W2998899239 cites W2171422564 @default.
- W2998899239 cites W2173097571 @default.
- W2998899239 cites W2176237298 @default.
- W2998899239 cites W2178617943 @default.
- W2998899239 cites W2179668590 @default.
- W2998899239 cites W2183209069 @default.
- W2998899239 cites W2184233725 @default.
- W2998899239 cites W2187423440 @default.
- W2998899239 cites W2312185787 @default.
- W2998899239 cites W2332573632 @default.
- W2998899239 cites W2340239062 @default.
- W2998899239 cites W2401938568 @default.
- W2998899239 cites W2588569669 @default.
- W2998899239 cites W2606337068 @default.
- W2998899239 cites W2630161542 @default.
- W2998899239 cites W2657407289 @default.
- W2998899239 cites W2886990220 @default.
- W2998899239 cites W2904748497 @default.
- W2998899239 cites W2928058072 @default.
- W2998899239 cites W2940512932 @default.
- W2998899239 cites W2943735627 @default.
- W2998899239 cites W3123127010 @default.
- W2998899239 doi "https://doi.org/10.1098/rstb.2019.0131" @default.
- W2998899239 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7017442" @default.
- W2998899239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31928199" @default.
- W2998899239 hasPublicationYear "2020" @default.
- W2998899239 type Work @default.
- W2998899239 sameAs 2998899239 @default.
- W2998899239 citedByCount "7" @default.
- W2998899239 countsByYear W29988992392020 @default.