Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998974499> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2998974499 endingPage "519" @default.
- W2998974499 startingPage "512" @default.
- W2998974499 abstract "Machine learning (ML) methods have been present in the field of NMR since decades, but it has experienced a tremendous growth in the last few years, especially thanks to the emergence of deep learning (DL) techniques taking advantage of the increased amounts of data and available computer power. These algorithms are successfully employed for classification, regression, clustering, or dimensionality reduction tasks of large data sets and have been intensively applied in different areas of NMR including metabonomics, clinical diagnosis, or relaxometry. In this article, we concentrate on the various applications of ML/DL in the areas of NMR signal processing and analysis of small molecules, including automatic structure verification and prediction of NMR observables in solution." @default.
- W2998974499 created "2020-01-23" @default.
- W2998974499 creator A5046778406 @default.
- W2998974499 date "2020-01-27" @default.
- W2998974499 modified "2023-10-16" @default.
- W2998974499 title "NMR signal processing, prediction, and structure verification with machine learning techniques" @default.
- W2998974499 cites W1563618054 @default.
- W2998974499 cites W1944437896 @default.
- W2998974499 cites W1964144526 @default.
- W2998974499 cites W1972873791 @default.
- W2998974499 cites W1999440281 @default.
- W2998974499 cites W2018540828 @default.
- W2998974499 cites W2023487899 @default.
- W2998974499 cites W2035605813 @default.
- W2998974499 cites W2043649107 @default.
- W2998974499 cites W2043752858 @default.
- W2998974499 cites W2053701172 @default.
- W2998974499 cites W2058151515 @default.
- W2998974499 cites W2064675550 @default.
- W2998974499 cites W2066179579 @default.
- W2998974499 cites W2074054277 @default.
- W2998974499 cites W2074121079 @default.
- W2998974499 cites W2093820574 @default.
- W2998974499 cites W2094643204 @default.
- W2998974499 cites W2094914511 @default.
- W2998974499 cites W2096884546 @default.
- W2998974499 cites W2114704115 @default.
- W2998974499 cites W2132119743 @default.
- W2998974499 cites W2343386623 @default.
- W2998974499 cites W2431218509 @default.
- W2998974499 cites W2465478525 @default.
- W2998974499 cites W2621028221 @default.
- W2998974499 cites W2793166270 @default.
- W2998974499 cites W2940933004 @default.
- W2998974499 cites W2945110298 @default.
- W2998974499 cites W2950180815 @default.
- W2998974499 cites W2958285426 @default.
- W2998974499 cites W2959135669 @default.
- W2998974499 cites W2980773467 @default.
- W2998974499 cites W2991496851 @default.
- W2998974499 cites W3101744125 @default.
- W2998974499 cites W4230413343 @default.
- W2998974499 cites W4231954879 @default.
- W2998974499 cites W4248712254 @default.
- W2998974499 cites W773032868 @default.
- W2998974499 doi "https://doi.org/10.1002/mrc.4989" @default.
- W2998974499 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31912547" @default.
- W2998974499 hasPublicationYear "2020" @default.
- W2998974499 type Work @default.
- W2998974499 sameAs 2998974499 @default.
- W2998974499 citedByCount "47" @default.
- W2998974499 countsByYear W29989744992020 @default.
- W2998974499 countsByYear W29989744992021 @default.
- W2998974499 countsByYear W29989744992022 @default.
- W2998974499 countsByYear W29989744992023 @default.
- W2998974499 crossrefType "journal-article" @default.
- W2998974499 hasAuthorship W2998974499A5046778406 @default.
- W2998974499 hasConcept C104267543 @default.
- W2998974499 hasConcept C154945302 @default.
- W2998974499 hasConcept C185592680 @default.
- W2998974499 hasConcept C199360897 @default.
- W2998974499 hasConcept C2779843651 @default.
- W2998974499 hasConcept C41008148 @default.
- W2998974499 hasConcept C84462506 @default.
- W2998974499 hasConcept C9390403 @default.
- W2998974499 hasConceptScore W2998974499C104267543 @default.
- W2998974499 hasConceptScore W2998974499C154945302 @default.
- W2998974499 hasConceptScore W2998974499C185592680 @default.
- W2998974499 hasConceptScore W2998974499C199360897 @default.
- W2998974499 hasConceptScore W2998974499C2779843651 @default.
- W2998974499 hasConceptScore W2998974499C41008148 @default.
- W2998974499 hasConceptScore W2998974499C84462506 @default.
- W2998974499 hasConceptScore W2998974499C9390403 @default.
- W2998974499 hasIssue "6" @default.
- W2998974499 hasLocation W29989744991 @default.
- W2998974499 hasOpenAccess W2998974499 @default.
- W2998974499 hasPrimaryLocation W29989744991 @default.
- W2998974499 hasRelatedWork W1978252114 @default.
- W2998974499 hasRelatedWork W2007758509 @default.
- W2998974499 hasRelatedWork W2027341112 @default.
- W2998974499 hasRelatedWork W2111075373 @default.
- W2998974499 hasRelatedWork W2116774138 @default.
- W2998974499 hasRelatedWork W2322458798 @default.
- W2998974499 hasRelatedWork W2350646373 @default.
- W2998974499 hasRelatedWork W2396887707 @default.
- W2998974499 hasRelatedWork W4310281875 @default.
- W2998974499 hasRelatedWork W567856160 @default.
- W2998974499 hasVolume "58" @default.
- W2998974499 isParatext "false" @default.
- W2998974499 isRetracted "false" @default.
- W2998974499 magId "2998974499" @default.
- W2998974499 workType "article" @default.