Matches in SemOpenAlex for { <https://semopenalex.org/work/W2998979210> ?p ?o ?g. }
- W2998979210 endingPage "60" @default.
- W2998979210 startingPage "60" @default.
- W2998979210 abstract "Negative binomial (NB) regression model has been used to analyze crime in previous studies. The disadvantage of the NB model is that it cannot deal with spatial effects. Therefore, spatial regression models, such as the geographically weighted Poisson regression (GWPR) model, were introduced to address spatial heterogeneity in crime analysis. However, GWPR could not account for overdispersion, which is commonly observed in crime data. The geographically weighted negative binomial model (GWNBR) was adopted to address spatial heterogeneity and overdispersion simultaneously in crime analysis, based on a 3-year data set collected from ZG city, China, in this study. The count of residential burglaries was used as the dependent variable to calibrate the above models, and the results revealed that the GWPR and GWNBR models performed better than NB for reducing spatial dependency in the model residuals. GWNBR outperformed GWPR for incorporating overdispersion. Therefore, GWNBR was proven to be a promising tool for crime modeling." @default.
- W2998979210 created "2020-01-23" @default.
- W2998979210 creator A5006645212 @default.
- W2998979210 creator A5048027347 @default.
- W2998979210 creator A5051082201 @default.
- W2998979210 creator A5073139296 @default.
- W2998979210 creator A5088676468 @default.
- W2998979210 date "2020-01-20" @default.
- W2998979210 modified "2023-10-16" @default.
- W2998979210 title "Integrative Analysis of Spatial Heterogeneity and Overdispersion of Crime with a Geographically Weighted Negative Binomial Model" @default.
- W2998979210 cites W1968590339 @default.
- W2998979210 cites W1973749534 @default.
- W2998979210 cites W1978784293 @default.
- W2998979210 cites W1982230961 @default.
- W2998979210 cites W1988132962 @default.
- W2998979210 cites W1989340490 @default.
- W2998979210 cites W1999304592 @default.
- W2998979210 cites W2012790126 @default.
- W2998979210 cites W2016968996 @default.
- W2998979210 cites W2018127194 @default.
- W2998979210 cites W2019634403 @default.
- W2998979210 cites W2044359197 @default.
- W2998979210 cites W2047120335 @default.
- W2998979210 cites W2058369607 @default.
- W2998979210 cites W2059888625 @default.
- W2998979210 cites W2060831261 @default.
- W2998979210 cites W2063293061 @default.
- W2998979210 cites W2063751881 @default.
- W2998979210 cites W2073109219 @default.
- W2998979210 cites W2077500534 @default.
- W2998979210 cites W2078034469 @default.
- W2998979210 cites W2079478691 @default.
- W2998979210 cites W2080116736 @default.
- W2998979210 cites W2087237308 @default.
- W2998979210 cites W2097163475 @default.
- W2998979210 cites W2106583428 @default.
- W2998979210 cites W2114434324 @default.
- W2998979210 cites W2119086348 @default.
- W2998979210 cites W2125799735 @default.
- W2998979210 cites W2150722935 @default.
- W2998979210 cites W2154525682 @default.
- W2998979210 cites W2156012707 @default.
- W2998979210 cites W2165933142 @default.
- W2998979210 cites W2167666757 @default.
- W2998979210 cites W2168922980 @default.
- W2998979210 cites W2179164794 @default.
- W2998979210 cites W2206955770 @default.
- W2998979210 cites W2312412536 @default.
- W2998979210 cites W2342932813 @default.
- W2998979210 cites W2365850091 @default.
- W2998979210 cites W2465843137 @default.
- W2998979210 cites W2473404650 @default.
- W2998979210 cites W2514900972 @default.
- W2998979210 cites W2556422168 @default.
- W2998979210 cites W2611814058 @default.
- W2998979210 cites W2664410355 @default.
- W2998979210 cites W2749568377 @default.
- W2998979210 cites W2773907781 @default.
- W2998979210 cites W2791757649 @default.
- W2998979210 cites W2792110986 @default.
- W2998979210 cites W2795846212 @default.
- W2998979210 cites W2805743203 @default.
- W2998979210 cites W2969553181 @default.
- W2998979210 cites W2989621501 @default.
- W2998979210 cites W4249855545 @default.
- W2998979210 cites W84561140 @default.
- W2998979210 doi "https://doi.org/10.3390/ijgi9010060" @default.
- W2998979210 hasPublicationYear "2020" @default.
- W2998979210 type Work @default.
- W2998979210 sameAs 2998979210 @default.
- W2998979210 citedByCount "21" @default.
- W2998979210 countsByYear W29989792102020 @default.
- W2998979210 countsByYear W29989792102021 @default.
- W2998979210 countsByYear W29989792102022 @default.
- W2998979210 countsByYear W29989792102023 @default.
- W2998979210 crossrefType "journal-article" @default.
- W2998979210 hasAuthorship W2998979210A5006645212 @default.
- W2998979210 hasAuthorship W2998979210A5048027347 @default.
- W2998979210 hasAuthorship W2998979210A5051082201 @default.
- W2998979210 hasAuthorship W2998979210A5073139296 @default.
- W2998979210 hasAuthorship W2998979210A5088676468 @default.
- W2998979210 hasBestOaLocation W29989792101 @default.
- W2998979210 hasConcept C100906024 @default.
- W2998979210 hasConcept C105795698 @default.
- W2998979210 hasConcept C117236510 @default.
- W2998979210 hasConcept C138695830 @default.
- W2998979210 hasConcept C144024400 @default.
- W2998979210 hasConcept C149782125 @default.
- W2998979210 hasConcept C149923435 @default.
- W2998979210 hasConcept C152877465 @default.
- W2998979210 hasConcept C15744967 @default.
- W2998979210 hasConcept C180478619 @default.
- W2998979210 hasConcept C18903297 @default.
- W2998979210 hasConcept C199335787 @default.
- W2998979210 hasConcept C2776876444 @default.
- W2998979210 hasConcept C2908647359 @default.
- W2998979210 hasConcept C33643355 @default.
- W2998979210 hasConcept C33923547 @default.