Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999028156> ?p ?o ?g. }
- W2999028156 endingPage "106284" @default.
- W2999028156 startingPage "106284" @default.
- W2999028156 abstract "Abstract The analysis and improvement of product quality for process industry is an increasing concern for academia and industry. As the outputs of a manufacturing system mainly depend on corresponding input conditions, so it is of high significance to develop an optimization scheme to actively and accurately determine operating parameters to obtain desired quality. However, the widely employed single-model modeling mode for whole production process neglects the natural characteristics within process manufacturing system such as multistage manufacturing and hysteresis. Additionally, the popular data-driven modeling techniques in current works, especially black-box machine learning models have been restricted to satisfying the requirements regarding excellent approximation capability and explicit mathematical expression simultaneously. To fill up above research gap, it is meaningful to develop a new data-driven optimization scheme in this work to effectively and accurately determine the optimum operating parameters considering the abovementioned characteristics and requirements. Firstly, two different connecting strategies are discussed to determine the more accurate and feasible quality propagation mode between adjacent stages. Then, two computational intelligence (CI) techniques, i.e., Multi-Gene Genetic Programming (MGGP) and Multi-objective Particle Swarm Optimization (MOPSO) algorithm are exploited to construct correlation model with explicit mathematical expression and derive the optimal operating parameters, respectively. Afterwards, the fuzzy Multi-criteria Decision Making (FMCDM) method is further proposed to select the optimal solution from the obtained Pareto solutions sets. The application of the proposed scheme in a coal preparation process indicates that the proposed scheme is promising and competitive on prediction accuracy and optimization efficiency over baseline methods, and can significantly improve the final product quality comparing with initial parameters setting. Moreover, the feasible quality specification for intermediate product can also be obtained by our proposed scheme which is beneficial for early detection of quality abnormality and timely parameters adjustment." @default.
- W2999028156 created "2020-01-23" @default.
- W2999028156 creator A5032683861 @default.
- W2999028156 creator A5055984065 @default.
- W2999028156 creator A5064890983 @default.
- W2999028156 creator A5067911307 @default.
- W2999028156 creator A5074092758 @default.
- W2999028156 date "2020-02-01" @default.
- W2999028156 modified "2023-10-08" @default.
- W2999028156 title "An integrated computational intelligence technique based operating parameters optimization scheme for quality improvement oriented process-manufacturing system" @default.
- W2999028156 cites W1416428480 @default.
- W2999028156 cites W2029661056 @default.
- W2999028156 cites W2127861000 @default.
- W2999028156 cites W2229695689 @default.
- W2999028156 cites W2323630342 @default.
- W2999028156 cites W2535945792 @default.
- W2999028156 cites W2587093354 @default.
- W2999028156 cites W2592976053 @default.
- W2999028156 cites W2610870325 @default.
- W2999028156 cites W2768072274 @default.
- W2999028156 cites W2783071401 @default.
- W2999028156 cites W2788105553 @default.
- W2999028156 cites W2788805965 @default.
- W2999028156 cites W2789290525 @default.
- W2999028156 cites W2789803954 @default.
- W2999028156 cites W2789845700 @default.
- W2999028156 cites W2794279078 @default.
- W2999028156 cites W2797147169 @default.
- W2999028156 cites W2803240211 @default.
- W2999028156 cites W2811137829 @default.
- W2999028156 cites W2884125962 @default.
- W2999028156 cites W2886058761 @default.
- W2999028156 cites W2890818887 @default.
- W2999028156 cites W2900328781 @default.
- W2999028156 cites W2900768224 @default.
- W2999028156 cites W2904628477 @default.
- W2999028156 cites W2905012744 @default.
- W2999028156 cites W2905025229 @default.
- W2999028156 cites W2905669406 @default.
- W2999028156 cites W2907913030 @default.
- W2999028156 cites W2908506597 @default.
- W2999028156 cites W2909055043 @default.
- W2999028156 cites W2909096226 @default.
- W2999028156 cites W2909580881 @default.
- W2999028156 cites W2909857538 @default.
- W2999028156 cites W2912996601 @default.
- W2999028156 cites W2913172223 @default.
- W2999028156 cites W2913821006 @default.
- W2999028156 cites W2914530224 @default.
- W2999028156 cites W2914631435 @default.
- W2999028156 cites W2914712218 @default.
- W2999028156 cites W2921018487 @default.
- W2999028156 cites W2922351830 @default.
- W2999028156 cites W2937303660 @default.
- W2999028156 cites W2940490017 @default.
- W2999028156 cites W2945201439 @default.
- W2999028156 cites W2945535868 @default.
- W2999028156 cites W2950779797 @default.
- W2999028156 cites W2965469039 @default.
- W2999028156 cites W2966341653 @default.
- W2999028156 cites W2990210508 @default.
- W2999028156 cites W2998227980 @default.
- W2999028156 doi "https://doi.org/10.1016/j.cie.2020.106284" @default.
- W2999028156 hasPublicationYear "2020" @default.
- W2999028156 type Work @default.
- W2999028156 sameAs 2999028156 @default.
- W2999028156 citedByCount "19" @default.
- W2999028156 countsByYear W29990281562020 @default.
- W2999028156 countsByYear W29990281562021 @default.
- W2999028156 countsByYear W29990281562022 @default.
- W2999028156 countsByYear W29990281562023 @default.
- W2999028156 crossrefType "journal-article" @default.
- W2999028156 hasAuthorship W2999028156A5032683861 @default.
- W2999028156 hasAuthorship W2999028156A5055984065 @default.
- W2999028156 hasAuthorship W2999028156A5064890983 @default.
- W2999028156 hasAuthorship W2999028156A5067911307 @default.
- W2999028156 hasAuthorship W2999028156A5074092758 @default.
- W2999028156 hasConcept C111472728 @default.
- W2999028156 hasConcept C111919701 @default.
- W2999028156 hasConcept C117671659 @default.
- W2999028156 hasConcept C127413603 @default.
- W2999028156 hasConcept C134306372 @default.
- W2999028156 hasConcept C138885662 @default.
- W2999028156 hasConcept C200601418 @default.
- W2999028156 hasConcept C2779530757 @default.
- W2999028156 hasConcept C33923547 @default.
- W2999028156 hasConcept C41008148 @default.
- W2999028156 hasConcept C77618280 @default.
- W2999028156 hasConcept C98045186 @default.
- W2999028156 hasConceptScore W2999028156C111472728 @default.
- W2999028156 hasConceptScore W2999028156C111919701 @default.
- W2999028156 hasConceptScore W2999028156C117671659 @default.
- W2999028156 hasConceptScore W2999028156C127413603 @default.
- W2999028156 hasConceptScore W2999028156C134306372 @default.
- W2999028156 hasConceptScore W2999028156C138885662 @default.
- W2999028156 hasConceptScore W2999028156C200601418 @default.
- W2999028156 hasConceptScore W2999028156C2779530757 @default.
- W2999028156 hasConceptScore W2999028156C33923547 @default.