Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999047536> ?p ?o ?g. }
- W2999047536 endingPage "930" @default.
- W2999047536 startingPage "918" @default.
- W2999047536 abstract "Driven by the widespread application of Service-Oriented Architecture (SOA), an increasing number of services and mashups have been developed and published onto the Internet in the past decades. With the number keeping on burgeoning, predicting the tendency of services invocation will provide various roles in service ecosystems with promising opportunities. However, services invocation bear three unique characteristics, which give rise to difficulties in predicting them. First, enormous services show different and complicated traits, like periodicity, nonlinearity and nonstationarity. Second, services providing similar or compensatory functions make up intricate relationship. Third, the combination dependencies between mashups and their comprising component services further amplify the difficulty. Given these factors, we have developed a tailored model Multi-Step Piecewise Recurrent Neural Network (MSP-RNN) to predict the tendency of services invocation. In MSP-RNN, Long Short Term Memory (LSTM) units are used to extract universal features. Based on these features, we have developed a piecewise regressive mechanism to make prediction discriminatingly. Besides, we have developed a multi-step prediction strategy to further enhance prediction accuracy and robustness. Extensive experiments in real-world data set with interpretable analysis show that MSP-RNN predicts the tendency of services invocation more accurately, i.e., by 3.7 percent in terms of symmetric mean absolute percentage error (SMAPE), than state-of-the-art baseline methods." @default.
- W2999047536 created "2020-01-23" @default.
- W2999047536 creator A5035352469 @default.
- W2999047536 creator A5063241356 @default.
- W2999047536 creator A5088943410 @default.
- W2999047536 creator A5090022501 @default.
- W2999047536 date "2022-03-01" @default.
- W2999047536 modified "2023-09-26" @default.
- W2999047536 title "MSP-RNN: Multi-Step Piecewise Recurrent Neural Network for Predicting the Tendency of Services Invocation" @default.
- W2999047536 cites W1498436455 @default.
- W2999047536 cites W1525800891 @default.
- W2999047536 cites W1560739766 @default.
- W2999047536 cites W1585151117 @default.
- W2999047536 cites W1894414046 @default.
- W2999047536 cites W1980645251 @default.
- W2999047536 cites W2004353783 @default.
- W2999047536 cites W2008743043 @default.
- W2999047536 cites W2012079387 @default.
- W2999047536 cites W2019798190 @default.
- W2999047536 cites W2034405392 @default.
- W2999047536 cites W2035009322 @default.
- W2999047536 cites W2044591035 @default.
- W2999047536 cites W2064675550 @default.
- W2999047536 cites W2067688816 @default.
- W2999047536 cites W2069929199 @default.
- W2999047536 cites W2114209105 @default.
- W2999047536 cites W2118371392 @default.
- W2999047536 cites W2119264846 @default.
- W2999047536 cites W2123173284 @default.
- W2999047536 cites W2125736403 @default.
- W2999047536 cites W2140870987 @default.
- W2999047536 cites W2144994235 @default.
- W2999047536 cites W2151748186 @default.
- W2999047536 cites W2209610041 @default.
- W2999047536 cites W2473843482 @default.
- W2999047536 cites W2474617995 @default.
- W2999047536 cites W2596861151 @default.
- W2999047536 cites W2604847698 @default.
- W2999047536 cites W2754274764 @default.
- W2999047536 cites W2767387808 @default.
- W2999047536 cites W2829536470 @default.
- W2999047536 cites W2889596732 @default.
- W2999047536 cites W2890105571 @default.
- W2999047536 cites W2947626232 @default.
- W2999047536 cites W2964010366 @default.
- W2999047536 cites W3163650977 @default.
- W2999047536 cites W4241186228 @default.
- W2999047536 cites W53334923 @default.
- W2999047536 doi "https://doi.org/10.1109/tsc.2020.2966487" @default.
- W2999047536 hasPublicationYear "2022" @default.
- W2999047536 type Work @default.
- W2999047536 sameAs 2999047536 @default.
- W2999047536 citedByCount "3" @default.
- W2999047536 countsByYear W29990475362021 @default.
- W2999047536 countsByYear W29990475362022 @default.
- W2999047536 crossrefType "journal-article" @default.
- W2999047536 hasAuthorship W2999047536A5035352469 @default.
- W2999047536 hasAuthorship W2999047536A5063241356 @default.
- W2999047536 hasAuthorship W2999047536A5088943410 @default.
- W2999047536 hasAuthorship W2999047536A5090022501 @default.
- W2999047536 hasConcept C104317684 @default.
- W2999047536 hasConcept C11413529 @default.
- W2999047536 hasConcept C119857082 @default.
- W2999047536 hasConcept C120314980 @default.
- W2999047536 hasConcept C134306372 @default.
- W2999047536 hasConcept C136764020 @default.
- W2999047536 hasConcept C144024400 @default.
- W2999047536 hasConcept C147168706 @default.
- W2999047536 hasConcept C154945302 @default.
- W2999047536 hasConcept C164660894 @default.
- W2999047536 hasConcept C185592680 @default.
- W2999047536 hasConcept C19165224 @default.
- W2999047536 hasConcept C2776527387 @default.
- W2999047536 hasConcept C33923547 @default.
- W2999047536 hasConcept C35578498 @default.
- W2999047536 hasConcept C41008148 @default.
- W2999047536 hasConcept C50644808 @default.
- W2999047536 hasConcept C55493867 @default.
- W2999047536 hasConcept C57041688 @default.
- W2999047536 hasConcept C63479239 @default.
- W2999047536 hasConceptScore W2999047536C104317684 @default.
- W2999047536 hasConceptScore W2999047536C11413529 @default.
- W2999047536 hasConceptScore W2999047536C119857082 @default.
- W2999047536 hasConceptScore W2999047536C120314980 @default.
- W2999047536 hasConceptScore W2999047536C134306372 @default.
- W2999047536 hasConceptScore W2999047536C136764020 @default.
- W2999047536 hasConceptScore W2999047536C144024400 @default.
- W2999047536 hasConceptScore W2999047536C147168706 @default.
- W2999047536 hasConceptScore W2999047536C154945302 @default.
- W2999047536 hasConceptScore W2999047536C164660894 @default.
- W2999047536 hasConceptScore W2999047536C185592680 @default.
- W2999047536 hasConceptScore W2999047536C19165224 @default.
- W2999047536 hasConceptScore W2999047536C2776527387 @default.
- W2999047536 hasConceptScore W2999047536C33923547 @default.
- W2999047536 hasConceptScore W2999047536C35578498 @default.
- W2999047536 hasConceptScore W2999047536C41008148 @default.
- W2999047536 hasConceptScore W2999047536C50644808 @default.
- W2999047536 hasConceptScore W2999047536C55493867 @default.