Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999080693> ?p ?o ?g. }
- W2999080693 endingPage "734956" @default.
- W2999080693 startingPage "734956" @default.
- W2999080693 abstract "Peracetic acid (PAA)-based disinfectants are considered as sustainable alternatives in aquaculture due to their harmless residues from spontaneous decay. The key components of PAA-based disinfectants are PAA and hydrogen peroxide (H2O2). Little is known if the exposure to exogenous PAA and H2O2 from PAA-based disinfectants interferes with endogenous reactive oxygen species (ROS) regulation and innate immunity in fish. In the present study, rainbow trout (Oncorhynchus mykiss) were exposed to a PAA-based disinfectant for 6 weeks in flow-through systems by either periodic (pulse) or continuous modes. For the periodic exposure, a single dose of 1 mg L−1 PAA (and 1.4 mg L−1 H2O2) was applied biweekly and spontaneously degraded within hours. For the continuous exposure, a constant drip was applied which aimed to maintain 0.2 mg L−1 PAA (and 0.28 mg L−1 H2O2) in the inflow water but was counteracted by escalating degradation by the second week. The exogenous PAA/H2O2 elevated the level of endogenous total free radicals (TFR), probably through diffusion at the gill, as well as stress-activated endogenous generation (by periodic exposure only at the higher PAA/H2O2 dose). In response, the total antioxidant capacity (TAC) in gill and serum was significantly elevated. Liver showed no significant changes in the levels of TFR and TAC. Epidermal mucous cell density was significantly lower in response to persistent scarce exogenous PAA/H2O2 of the continuous exposure compared to the control. This sensitive response was absent in the periodic exposure probably due to rapid epidermal recovery during the exposure intervals. In contrast, the branchial structural adjustment of trout in response to exogenous ROS was less sensitive. Minimal hyperplasia of lamellae was present only in the periodic exposure. Enzymes responsible for innate cutaneous and humoral immunity including lysozyme, alkaline phosphatase, myeloperoxidase and esterase were not influenced by either exposure. However, ceruloplasmin was highly sensitive to exogenous PAA/H2O2; it was significantly elevated in fish skin, independent of the exposure modes, suggesting potential antioxidant protection of ceruloplasmin in fish skin. In serum, ceruloplasmin reduction was positively correlated to the reduction of antiprotease activity which indicates that ceruloplasmin may have anti-proteolytic function in fish blood. In conclusion, both exposure modes of the PAA-based disinfectant triggered mild antioxidant defenses in rainbow trout. To minimize the risk of oxidative damage while applying PAA-based disinfectants, sufficient intervals between periodic applications might be a better option than the persistent low PAA/H2O2 concentration of the continuous application." @default.
- W2999080693 created "2020-01-23" @default.
- W2999080693 creator A5004325125 @default.
- W2999080693 creator A5024429791 @default.
- W2999080693 creator A5077836058 @default.
- W2999080693 creator A5081407479 @default.
- W2999080693 creator A5081538734 @default.
- W2999080693 date "2020-04-01" @default.
- W2999080693 modified "2023-10-18" @default.
- W2999080693 title "Antioxidative, histological and immunological responses of rainbow trout after periodic and continuous exposures to a peracetic acid-based disinfectant" @default.
- W2999080693 cites W1523230598 @default.
- W2999080693 cites W1664321550 @default.
- W2999080693 cites W1882869596 @default.
- W2999080693 cites W1893944735 @default.
- W2999080693 cites W1972177707 @default.
- W2999080693 cites W1972485914 @default.
- W2999080693 cites W1974073103 @default.
- W2999080693 cites W1981166602 @default.
- W2999080693 cites W1983135948 @default.
- W2999080693 cites W1991247491 @default.
- W2999080693 cites W1997222690 @default.
- W2999080693 cites W1999787799 @default.
- W2999080693 cites W2000762581 @default.
- W2999080693 cites W2002706411 @default.
- W2999080693 cites W2005687534 @default.
- W2999080693 cites W2010976267 @default.
- W2999080693 cites W2012967676 @default.
- W2999080693 cites W201429414 @default.
- W2999080693 cites W2015606290 @default.
- W2999080693 cites W2026126035 @default.
- W2999080693 cites W2038561084 @default.
- W2999080693 cites W2039031569 @default.
- W2999080693 cites W2042751166 @default.
- W2999080693 cites W2047429667 @default.
- W2999080693 cites W2048951963 @default.
- W2999080693 cites W2050243594 @default.
- W2999080693 cites W2051400955 @default.
- W2999080693 cites W2053786700 @default.
- W2999080693 cites W2059918255 @default.
- W2999080693 cites W2065765007 @default.
- W2999080693 cites W2069463594 @default.
- W2999080693 cites W2076308353 @default.
- W2999080693 cites W2083454836 @default.
- W2999080693 cites W2090389306 @default.
- W2999080693 cites W2102619095 @default.
- W2999080693 cites W2117621359 @default.
- W2999080693 cites W2124765964 @default.
- W2999080693 cites W2138140504 @default.
- W2999080693 cites W2146890885 @default.
- W2999080693 cites W2147041980 @default.
- W2999080693 cites W2147070585 @default.
- W2999080693 cites W2147928001 @default.
- W2999080693 cites W2160934650 @default.
- W2999080693 cites W2161555348 @default.
- W2999080693 cites W2162674010 @default.
- W2999080693 cites W2170628857 @default.
- W2999080693 cites W2473770303 @default.
- W2999080693 cites W2514567921 @default.
- W2999080693 cites W2548917226 @default.
- W2999080693 cites W2595321923 @default.
- W2999080693 cites W2602040592 @default.
- W2999080693 cites W2765208981 @default.
- W2999080693 cites W2768655401 @default.
- W2999080693 cites W2796756099 @default.
- W2999080693 cites W2800545870 @default.
- W2999080693 cites W287812760 @default.
- W2999080693 cites W2910828975 @default.
- W2999080693 cites W4214589643 @default.
- W2999080693 doi "https://doi.org/10.1016/j.aquaculture.2020.734956" @default.
- W2999080693 hasPublicationYear "2020" @default.
- W2999080693 type Work @default.
- W2999080693 sameAs 2999080693 @default.
- W2999080693 citedByCount "16" @default.
- W2999080693 countsByYear W29990806932020 @default.
- W2999080693 countsByYear W29990806932021 @default.
- W2999080693 countsByYear W29990806932022 @default.
- W2999080693 countsByYear W29990806932023 @default.
- W2999080693 crossrefType "journal-article" @default.
- W2999080693 hasAuthorship W2999080693A5004325125 @default.
- W2999080693 hasAuthorship W2999080693A5024429791 @default.
- W2999080693 hasAuthorship W2999080693A5077836058 @default.
- W2999080693 hasAuthorship W2999080693A5081407479 @default.
- W2999080693 hasAuthorship W2999080693A5081538734 @default.
- W2999080693 hasBestOaLocation W29990806931 @default.
- W2999080693 hasConcept C136449434 @default.
- W2999080693 hasConcept C16613235 @default.
- W2999080693 hasConcept C178790620 @default.
- W2999080693 hasConcept C185592680 @default.
- W2999080693 hasConcept C203014093 @default.
- W2999080693 hasConcept C2776151105 @default.
- W2999080693 hasConcept C2777309684 @default.
- W2999080693 hasConcept C2778004101 @default.
- W2999080693 hasConcept C2781221799 @default.
- W2999080693 hasConcept C2909208804 @default.
- W2999080693 hasConcept C2994167347 @default.
- W2999080693 hasConcept C505870484 @default.
- W2999080693 hasConcept C533411734 @default.
- W2999080693 hasConcept C55493867 @default.