Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999091120> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2999091120 abstract "Cloud computing, a user-centric computational model, is flexible paradigm of deploying and sharing distributed services and resources with the pay-per-use model. With virtual machine (VM) technology and data centers (DCs), computational resources, such as memory, central processing unit (CPU), and storage, are dynamically reassembled and partitioned to meet the specific requirements of end users. The demand’s growth for cloud services is presenting considerable challenges for cloud providers to meet the requirements and satisfaction of end users. Virtualization technology reduces cloud operational cost by increasing cloud resource utilization level. In addition, the ever growing computational demands of users call for e_cient cloud resource management to avoid SLA violation. Virtualization co-locates multiple virtual machines (VM) on a single physical server to share the underlying resources for e_cient resource management. However, the decision about ”what” and ”where” to place workloads significantly impacts performance of hosted workloads. Load balancing between physical servers is important to avoid dangerous hot spots in the Cloud; in fact, overload situations are dangerous since they can easily lead to resource shortage and, at the same time, they can a_ect hardware lifetime, thus undermining data center reliability. Existing cloud schedulers consider a single resource (RAM) to co-locate workloads that as a result lead to SLA violation due to nonoptimal VM placement. In addition, allocation of VMs based on traditional scheduler ine_ciently balance the workload distribution that leads to extended the application execution time. Furthermore, exiting studies incorporates the migration technique in order to balance the load after the initial placement of workload, which leads to the maximum numbers of migrations. Therefore, to overcome these issues, this study propose the efficient load balancing solutions to uniformly distribute the workload among the physical servers. The initial VM placement method called Static Multi Resource based Sched uler (SMRS), is designed to enhance the application execution time while balancing the CPU utilization without VM migrations. In addition, the Dynamic Multi Resource based Scheduler (DMRS) method is proposed to minimize the number of migrations after the initial placement of workload. We performed the real time experiments using the Open- Stack cloud to highlight the e_ciency of SMRS and DMRS solutions. Moreover, this study proposed the mathematical model for SMRS and DMRS method. To validate the correctness of the mathematical model, the empirical results and mathematical results are compared based on the CPU utilization, application execution time, and numbers of VM migrations as a performance metrics. The e_ectiveness of the proposed solution is evaluated by comparing their empirical results with well-known standard OpenStack nova scheduler. Experimentally, we have shown that our proposed method has lessened application execution time by 50% when compared with standard OpenStack cloud in static environment. In dynamic environment, the performance gain is reported up to 85% and 94.4% based on application execution time and CPU utilization. The improvement in application execution time increases the usability of cloud data centers." @default.
- W2999091120 created "2020-01-23" @default.
- W2999091120 creator A5084171715 @default.
- W2999091120 date "2017-08-01" @default.
- W2999091120 modified "2023-09-23" @default.
- W2999091120 title "Distribution of virtual machines using static and dynamic load balancing in cloud computing / Misbah Liaqat" @default.
- W2999091120 hasPublicationYear "2017" @default.
- W2999091120 type Work @default.
- W2999091120 sameAs 2999091120 @default.
- W2999091120 citedByCount "0" @default.
- W2999091120 crossrefType "dissertation" @default.
- W2999091120 hasAuthorship W2999091120A5084171715 @default.
- W2999091120 hasConcept C111919701 @default.
- W2999091120 hasConcept C120314980 @default.
- W2999091120 hasConcept C138959212 @default.
- W2999091120 hasConcept C142355369 @default.
- W2999091120 hasConcept C153740404 @default.
- W2999091120 hasConcept C187691185 @default.
- W2999091120 hasConcept C2524010 @default.
- W2999091120 hasConcept C25344961 @default.
- W2999091120 hasConcept C2778160497 @default.
- W2999091120 hasConcept C2778476105 @default.
- W2999091120 hasConcept C2778710394 @default.
- W2999091120 hasConcept C2780609101 @default.
- W2999091120 hasConcept C29202148 @default.
- W2999091120 hasConcept C31258907 @default.
- W2999091120 hasConcept C33923547 @default.
- W2999091120 hasConcept C41008148 @default.
- W2999091120 hasConcept C513985346 @default.
- W2999091120 hasConcept C79974875 @default.
- W2999091120 hasConcept C93996380 @default.
- W2999091120 hasConceptScore W2999091120C111919701 @default.
- W2999091120 hasConceptScore W2999091120C120314980 @default.
- W2999091120 hasConceptScore W2999091120C138959212 @default.
- W2999091120 hasConceptScore W2999091120C142355369 @default.
- W2999091120 hasConceptScore W2999091120C153740404 @default.
- W2999091120 hasConceptScore W2999091120C187691185 @default.
- W2999091120 hasConceptScore W2999091120C2524010 @default.
- W2999091120 hasConceptScore W2999091120C25344961 @default.
- W2999091120 hasConceptScore W2999091120C2778160497 @default.
- W2999091120 hasConceptScore W2999091120C2778476105 @default.
- W2999091120 hasConceptScore W2999091120C2778710394 @default.
- W2999091120 hasConceptScore W2999091120C2780609101 @default.
- W2999091120 hasConceptScore W2999091120C29202148 @default.
- W2999091120 hasConceptScore W2999091120C31258907 @default.
- W2999091120 hasConceptScore W2999091120C33923547 @default.
- W2999091120 hasConceptScore W2999091120C41008148 @default.
- W2999091120 hasConceptScore W2999091120C513985346 @default.
- W2999091120 hasConceptScore W2999091120C79974875 @default.
- W2999091120 hasConceptScore W2999091120C93996380 @default.
- W2999091120 hasLocation W29990911201 @default.
- W2999091120 hasOpenAccess W2999091120 @default.
- W2999091120 hasPrimaryLocation W29990911201 @default.
- W2999091120 hasRelatedWork W1482215161 @default.
- W2999091120 hasRelatedWork W2024247835 @default.
- W2999091120 hasRelatedWork W2070401459 @default.
- W2999091120 hasRelatedWork W2186632116 @default.
- W2999091120 hasRelatedWork W2243868549 @default.
- W2999091120 hasRelatedWork W2474181324 @default.
- W2999091120 hasRelatedWork W2612412391 @default.
- W2999091120 hasRelatedWork W2735970167 @default.
- W2999091120 hasRelatedWork W2755137706 @default.
- W2999091120 hasRelatedWork W2779476175 @default.
- W2999091120 hasRelatedWork W2783761988 @default.
- W2999091120 hasRelatedWork W2899413050 @default.
- W2999091120 hasRelatedWork W2906572187 @default.
- W2999091120 hasRelatedWork W2925935103 @default.
- W2999091120 hasRelatedWork W2977470299 @default.
- W2999091120 hasRelatedWork W2983392706 @default.
- W2999091120 hasRelatedWork W3129952308 @default.
- W2999091120 hasRelatedWork W3138243008 @default.
- W2999091120 hasRelatedWork W953517562 @default.
- W2999091120 hasRelatedWork W2574551232 @default.
- W2999091120 isParatext "false" @default.
- W2999091120 isRetracted "false" @default.
- W2999091120 magId "2999091120" @default.
- W2999091120 workType "dissertation" @default.