Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999132005> ?p ?o ?g. }
- W2999132005 endingPage "136697" @default.
- W2999132005 startingPage "136697" @default.
- W2999132005 abstract "Climate change is exacerbating environmental pollution from crop production. Spatially and temporally explicit estimates of life-cycle environmental impacts are therefore needed for suggesting location and time relevant environmental mitigations strategies. Emission factors and process-based mechanism models are popular approaches used to estimate life-cycle environmental impacts. However, emission factors are often incapable of describing spatial and temporal heterogeneity of agricultural emissions, whereas process-based mechanistic models, capable of capturing the heterogeneity, tend to be very complicated and time-consuming. Efficient prediction of life-cycle environmental impacts from agricultural production is lacking. This study develops a rapid predictive model to quantify life-cycle global warming (GW) and eutrophication (EU) impacts of corn production using a novel machine learning approach. We used the boosted regression tree (BRT) model to estimate future life-cycle environmental impacts of corn production in U.S. Midwest counties under four emissions scenarios for years 2022–2100. Results from BRT models indicate that the cross-validation (R2) for predicting life cycle GW and EU impacts ranged from 0.78 to 0.82, respectively. Furthermore, results show that future life-cycle GW and EU impacts of corn production will increase in magnitude under all four emissions scenarios, with the highest environmental impacts shown under the high-emissions scenario. Moreover, this study found that changes in precipitation and temperature played a significant role in influencing the spatial heterogeneity in all life-cycle impacts across Midwest counties. The BRT model results indicate that machine learning can be a useful tool for predicting spatially and temporally explicit future life-cycle environmental impacts associated with corn production under different climate scenarios." @default.
- W2999132005 created "2020-01-23" @default.
- W2999132005 creator A5007459655 @default.
- W2999132005 creator A5027453481 @default.
- W2999132005 creator A5036821763 @default.
- W2999132005 creator A5039144425 @default.
- W2999132005 creator A5057628474 @default.
- W2999132005 creator A5058676791 @default.
- W2999132005 creator A5064466730 @default.
- W2999132005 creator A5069255958 @default.
- W2999132005 date "2020-04-01" @default.
- W2999132005 modified "2023-10-16" @default.
- W2999132005 title "Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach" @default.
- W2999132005 cites W1515826731 @default.
- W2999132005 cites W1678356000 @default.
- W2999132005 cites W1726239842 @default.
- W2999132005 cites W1925811290 @default.
- W2999132005 cites W1963614552 @default.
- W2999132005 cites W1964872808 @default.
- W2999132005 cites W1969845721 @default.
- W2999132005 cites W1971081761 @default.
- W2999132005 cites W1971425631 @default.
- W2999132005 cites W1978532063 @default.
- W2999132005 cites W1980752357 @default.
- W2999132005 cites W1981652627 @default.
- W2999132005 cites W1985217958 @default.
- W2999132005 cites W1991134979 @default.
- W2999132005 cites W1991308688 @default.
- W2999132005 cites W1991661875 @default.
- W2999132005 cites W2002457631 @default.
- W2999132005 cites W2004742220 @default.
- W2999132005 cites W2009660903 @default.
- W2999132005 cites W2012790896 @default.
- W2999132005 cites W2016006311 @default.
- W2999132005 cites W2017322705 @default.
- W2999132005 cites W2026953511 @default.
- W2999132005 cites W2029317847 @default.
- W2999132005 cites W2033404926 @default.
- W2999132005 cites W2036184352 @default.
- W2999132005 cites W2047268881 @default.
- W2999132005 cites W2050146692 @default.
- W2999132005 cites W2052427124 @default.
- W2999132005 cites W2053649894 @default.
- W2999132005 cites W2054653365 @default.
- W2999132005 cites W2056755564 @default.
- W2999132005 cites W2057329754 @default.
- W2999132005 cites W2060645010 @default.
- W2999132005 cites W2075850201 @default.
- W2999132005 cites W2077768633 @default.
- W2999132005 cites W2079664396 @default.
- W2999132005 cites W2081635696 @default.
- W2999132005 cites W2083986273 @default.
- W2999132005 cites W2084123877 @default.
- W2999132005 cites W2092801713 @default.
- W2999132005 cites W2096315995 @default.
- W2999132005 cites W2097004990 @default.
- W2999132005 cites W2107563489 @default.
- W2999132005 cites W2111480700 @default.
- W2999132005 cites W2125303562 @default.
- W2999132005 cites W2135695572 @default.
- W2999132005 cites W2139043653 @default.
- W2999132005 cites W2148185586 @default.
- W2999132005 cites W2155693355 @default.
- W2999132005 cites W2170813263 @default.
- W2999132005 cites W2177299793 @default.
- W2999132005 cites W2284484756 @default.
- W2999132005 cites W2315062961 @default.
- W2999132005 cites W2319010106 @default.
- W2999132005 cites W2328176404 @default.
- W2999132005 cites W2340972631 @default.
- W2999132005 cites W2413196224 @default.
- W2999132005 cites W2552451861 @default.
- W2999132005 cites W2599751424 @default.
- W2999132005 cites W2724101542 @default.
- W2999132005 cites W2741925805 @default.
- W2999132005 cites W2767880975 @default.
- W2999132005 cites W2792091148 @default.
- W2999132005 cites W2794812208 @default.
- W2999132005 cites W2807714100 @default.
- W2999132005 cites W2924048384 @default.
- W2999132005 cites W2973839077 @default.
- W2999132005 cites W824893108 @default.
- W2999132005 doi "https://doi.org/10.1016/j.scitotenv.2020.136697" @default.
- W2999132005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31982745" @default.
- W2999132005 hasPublicationYear "2020" @default.
- W2999132005 type Work @default.
- W2999132005 sameAs 2999132005 @default.
- W2999132005 citedByCount "31" @default.
- W2999132005 countsByYear W29991320052020 @default.
- W2999132005 countsByYear W29991320052021 @default.
- W2999132005 countsByYear W29991320052022 @default.
- W2999132005 countsByYear W29991320052023 @default.
- W2999132005 crossrefType "journal-article" @default.
- W2999132005 hasAuthorship W2999132005A5007459655 @default.
- W2999132005 hasAuthorship W2999132005A5027453481 @default.
- W2999132005 hasAuthorship W2999132005A5036821763 @default.
- W2999132005 hasAuthorship W2999132005A5039144425 @default.
- W2999132005 hasAuthorship W2999132005A5057628474 @default.