Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999168082> ?p ?o ?g. }
- W2999168082 endingPage "16186" @default.
- W2999168082 startingPage "16174" @default.
- W2999168082 abstract "With the popularity of the internet, the expression of emotions and methods of communication are becoming increasingly abundant, and most of these emotions are transmitted in text form. Text sentiment classification research mainly includes three methods based on sentiment dictionaries, machine learning and deep learning. In recent years, many deep learning-based works have used TextCNN (text convolution neural network) to extract text semantic information for text sentiment analysis. However, TextCNN only considers the length of the sentence when extracting semantic information. It ignores the semantic features between word vectors and only considers the maximum feature value of the feature image in the pooling layer without considering other information. Therefore, in this paper, we propose a convolutional neural network based on multiple convolutions and pooling for text sentiment classification (variable convolution and pooling convolution neural network, VCPCNN). There are three contributions in this paper. First, a multiconvolution and pooling neural network is proposed for the TextCNN network structure. Second, four convolution operations are introduced in the word embedding dimension or direction, which are helpful for mining the local features on the semantic dimensions of word vectors. Finally, average pooling is introduced in the pooling layer, which is beneficial for saving the important feature information of the extracted features. The verification test was carried out on four emotional datasets, including English emotional polarity, Chinese emotional polarity, Chinese subjective and objective emotion and Chinese multicategory. Our apporach is effective in that its result was up to 1.97% higher than that of the TextCNN network." @default.
- W2999168082 created "2020-01-23" @default.
- W2999168082 creator A5006207753 @default.
- W2999168082 creator A5030528107 @default.
- W2999168082 creator A5044571416 @default.
- W2999168082 creator A5055608769 @default.
- W2999168082 creator A5083973158 @default.
- W2999168082 creator A5086937566 @default.
- W2999168082 date "2020-01-01" @default.
- W2999168082 modified "2023-10-12" @default.
- W2999168082 title "Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification" @default.
- W2999168082 cites W1832693441 @default.
- W2999168082 cites W2008056655 @default.
- W2999168082 cites W2120615054 @default.
- W2999168082 cites W2272031392 @default.
- W2999168082 cites W2401379394 @default.
- W2999168082 cites W2492583839 @default.
- W2999168082 cites W2574771052 @default.
- W2999168082 cites W2582695630 @default.
- W2999168082 cites W2586733088 @default.
- W2999168082 cites W2593134789 @default.
- W2999168082 cites W2604363985 @default.
- W2999168082 cites W2765753216 @default.
- W2999168082 cites W2768147993 @default.
- W2999168082 cites W2783546197 @default.
- W2999168082 cites W2790265911 @default.
- W2999168082 cites W2791521493 @default.
- W2999168082 cites W2792417713 @default.
- W2999168082 cites W2792883466 @default.
- W2999168082 cites W2808935177 @default.
- W2999168082 cites W2808956056 @default.
- W2999168082 cites W2809365612 @default.
- W2999168082 cites W2810374907 @default.
- W2999168082 cites W2896337548 @default.
- W2999168082 cites W2897811365 @default.
- W2999168082 cites W2902202269 @default.
- W2999168082 cites W2902736485 @default.
- W2999168082 cites W2940627316 @default.
- W2999168082 cites W2941503377 @default.
- W2999168082 cites W2946183247 @default.
- W2999168082 cites W2947851192 @default.
- W2999168082 cites W2964236337 @default.
- W2999168082 cites W2965349765 @default.
- W2999168082 doi "https://doi.org/10.1109/access.2020.2966726" @default.
- W2999168082 hasPublicationYear "2020" @default.
- W2999168082 type Work @default.
- W2999168082 sameAs 2999168082 @default.
- W2999168082 citedByCount "24" @default.
- W2999168082 countsByYear W29991680822020 @default.
- W2999168082 countsByYear W29991680822021 @default.
- W2999168082 countsByYear W29991680822022 @default.
- W2999168082 countsByYear W29991680822023 @default.
- W2999168082 crossrefType "journal-article" @default.
- W2999168082 hasAuthorship W2999168082A5006207753 @default.
- W2999168082 hasAuthorship W2999168082A5030528107 @default.
- W2999168082 hasAuthorship W2999168082A5044571416 @default.
- W2999168082 hasAuthorship W2999168082A5055608769 @default.
- W2999168082 hasAuthorship W2999168082A5083973158 @default.
- W2999168082 hasAuthorship W2999168082A5086937566 @default.
- W2999168082 hasBestOaLocation W29991680821 @default.
- W2999168082 hasConcept C134306372 @default.
- W2999168082 hasConcept C153180895 @default.
- W2999168082 hasConcept C154945302 @default.
- W2999168082 hasConcept C182365436 @default.
- W2999168082 hasConcept C204321447 @default.
- W2999168082 hasConcept C33923547 @default.
- W2999168082 hasConcept C41008148 @default.
- W2999168082 hasConcept C45347329 @default.
- W2999168082 hasConcept C50644808 @default.
- W2999168082 hasConcept C70437156 @default.
- W2999168082 hasConcept C81363708 @default.
- W2999168082 hasConceptScore W2999168082C134306372 @default.
- W2999168082 hasConceptScore W2999168082C153180895 @default.
- W2999168082 hasConceptScore W2999168082C154945302 @default.
- W2999168082 hasConceptScore W2999168082C182365436 @default.
- W2999168082 hasConceptScore W2999168082C204321447 @default.
- W2999168082 hasConceptScore W2999168082C33923547 @default.
- W2999168082 hasConceptScore W2999168082C41008148 @default.
- W2999168082 hasConceptScore W2999168082C45347329 @default.
- W2999168082 hasConceptScore W2999168082C50644808 @default.
- W2999168082 hasConceptScore W2999168082C70437156 @default.
- W2999168082 hasConceptScore W2999168082C81363708 @default.
- W2999168082 hasFunder F4320321001 @default.
- W2999168082 hasLocation W29991680821 @default.
- W2999168082 hasOpenAccess W2999168082 @default.
- W2999168082 hasPrimaryLocation W29991680821 @default.
- W2999168082 hasRelatedWork W2758063741 @default.
- W2999168082 hasRelatedWork W2788663687 @default.
- W2999168082 hasRelatedWork W2792080776 @default.
- W2999168082 hasRelatedWork W2921836287 @default.
- W2999168082 hasRelatedWork W2969680539 @default.
- W2999168082 hasRelatedWork W2996983197 @default.
- W2999168082 hasRelatedWork W2997558667 @default.
- W2999168082 hasRelatedWork W3016953135 @default.
- W2999168082 hasRelatedWork W4225850200 @default.
- W2999168082 hasRelatedWork W4288104026 @default.
- W2999168082 hasVolume "8" @default.
- W2999168082 isParatext "false" @default.