Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999173106> ?p ?o ?g. }
- W2999173106 endingPage "107183" @default.
- W2999173106 startingPage "107183" @default.
- W2999173106 abstract "Considering the proliferation of extremely high-dimensional data in many domains including computer vision and healthcare applications such as computer-aided diagnosis (CAD), advanced techniques for reducing data dimensionality and identifying the most relevant features for a given classification task such as distinguishing between healthy and disordered brain states are needed. Despite the existence of many works on boosting the classification accuracy using a particular feature selection (FS) method, choosing the best one from a large pool of existing FS techniques for boosting feature reproducibility within a dataset of interest remains a formidable challenge to tackle. Notably, a good performance of a particular FS method does not necessarily imply that the experiment is reproducible and that the features identified are optimal for the entirety of the samples. Essentially, this paper presents the first attempt to address the following challenge: “Given a set of different feature selection methods {FS1,⋯,FSK}, and a dataset of interest, how to identify the most reproducible and ‘trustworthy’ connectomic features that would produce reliable biomarkers capable of accurately differentiate between two specific conditions?” To this aim, we propose FS-Select framework which explores the relationships among the different FS methods using a multi-graph architecture based on feature reproducibility power, average accuracy, and feature stability of each FS method. By extracting the ‘central’ graph node, we identify the most reliable and reproducible FS method for the target brain state classification task along with the most discriminative features fingerprinting these brain states. To evaluate the reproducibility power of FS-Select, we perturbed the training set by using different cross-validation strategies on a multi-view small-scale connectomic dataset (late mild cognitive impairment vs Alzheimer’s disease) and large-scale dataset including autistic vs healthy subjects. Our experiments revealed reproducible connectional features fingerprinting disordered brain states." @default.
- W2999173106 created "2020-01-23" @default.
- W2999173106 creator A5006705472 @default.
- W2999173106 creator A5035352293 @default.
- W2999173106 creator A5048784346 @default.
- W2999173106 creator A5081078173 @default.
- W2999173106 date "2020-05-01" @default.
- W2999173106 modified "2023-10-15" @default.
- W2999173106 title "Identifying the best data-driven feature selection method for boosting reproducibility in classification tasks" @default.
- W2999173106 cites W1136224152 @default.
- W2999173106 cites W1545302199 @default.
- W2999173106 cites W159622108 @default.
- W2999173106 cites W1872034074 @default.
- W2999173106 cites W1972611912 @default.
- W2999173106 cites W1980132690 @default.
- W2999173106 cites W1999653836 @default.
- W2999173106 cites W2002039869 @default.
- W2999173106 cites W2002645541 @default.
- W2999173106 cites W2005342778 @default.
- W2999173106 cites W2014022174 @default.
- W2999173106 cites W2019271078 @default.
- W2999173106 cites W2021753155 @default.
- W2999173106 cites W2038894244 @default.
- W2999173106 cites W2044098745 @default.
- W2999173106 cites W2056944867 @default.
- W2999173106 cites W2077922582 @default.
- W2999173106 cites W2082066852 @default.
- W2999173106 cites W2085199634 @default.
- W2999173106 cites W2087576375 @default.
- W2999173106 cites W2101135654 @default.
- W2999173106 cites W2102831150 @default.
- W2999173106 cites W2104198116 @default.
- W2999173106 cites W2105824687 @default.
- W2999173106 cites W2108718322 @default.
- W2999173106 cites W2116079122 @default.
- W2999173106 cites W2118142823 @default.
- W2999173106 cites W2119387367 @default.
- W2999173106 cites W2121410881 @default.
- W2999173106 cites W2146739527 @default.
- W2999173106 cites W2147676355 @default.
- W2999173106 cites W2151130155 @default.
- W2999173106 cites W2154053567 @default.
- W2999173106 cites W2155513557 @default.
- W2999173106 cites W2156483112 @default.
- W2999173106 cites W2162162988 @default.
- W2999173106 cites W2167101736 @default.
- W2999173106 cites W2205061450 @default.
- W2999173106 cites W2344681634 @default.
- W2999173106 cites W2510447297 @default.
- W2999173106 cites W2550999023 @default.
- W2999173106 cites W2590328111 @default.
- W2999173106 cites W2611951306 @default.
- W2999173106 cites W2747166117 @default.
- W2999173106 cites W2793460340 @default.
- W2999173106 cites W2794107469 @default.
- W2999173106 cites W2803679388 @default.
- W2999173106 cites W2809455333 @default.
- W2999173106 cites W2889302076 @default.
- W2999173106 cites W2890996272 @default.
- W2999173106 cites W2895252712 @default.
- W2999173106 cites W2898535604 @default.
- W2999173106 cites W2949267074 @default.
- W2999173106 cites W2978335131 @default.
- W2999173106 cites W4249247926 @default.
- W2999173106 doi "https://doi.org/10.1016/j.patcog.2019.107183" @default.
- W2999173106 hasPublicationYear "2020" @default.
- W2999173106 type Work @default.
- W2999173106 sameAs 2999173106 @default.
- W2999173106 citedByCount "25" @default.
- W2999173106 countsByYear W29991731062020 @default.
- W2999173106 countsByYear W29991731062021 @default.
- W2999173106 countsByYear W29991731062022 @default.
- W2999173106 countsByYear W29991731062023 @default.
- W2999173106 crossrefType "journal-article" @default.
- W2999173106 hasAuthorship W2999173106A5006705472 @default.
- W2999173106 hasAuthorship W2999173106A5035352293 @default.
- W2999173106 hasAuthorship W2999173106A5048784346 @default.
- W2999173106 hasAuthorship W2999173106A5081078173 @default.
- W2999173106 hasBestOaLocation W29991731061 @default.
- W2999173106 hasConcept C105795698 @default.
- W2999173106 hasConcept C111030470 @default.
- W2999173106 hasConcept C119857082 @default.
- W2999173106 hasConcept C124101348 @default.
- W2999173106 hasConcept C132525143 @default.
- W2999173106 hasConcept C138885662 @default.
- W2999173106 hasConcept C148483581 @default.
- W2999173106 hasConcept C153180895 @default.
- W2999173106 hasConcept C154945302 @default.
- W2999173106 hasConcept C2776401178 @default.
- W2999173106 hasConcept C33923547 @default.
- W2999173106 hasConcept C41008148 @default.
- W2999173106 hasConcept C41895202 @default.
- W2999173106 hasConcept C46686674 @default.
- W2999173106 hasConcept C80444323 @default.
- W2999173106 hasConcept C97931131 @default.
- W2999173106 hasConcept C9893847 @default.
- W2999173106 hasConceptScore W2999173106C105795698 @default.
- W2999173106 hasConceptScore W2999173106C111030470 @default.