Matches in SemOpenAlex for { <https://semopenalex.org/work/W29991981> ?p ?o ?g. }
- W29991981 abstract "Species distribution models (SDMs) are empirical models relating species occurrence to environmental variables based on statistical or other response surfaces. SDMs can be used as a tool to solve some theoretical and applied ecological and environmental problems. The success of their applications depends on the accuracy of the models. In this study we propose an approach to thoroughly assess the accuracy of species distribution models. This includes three aspects: First is to use several accuracy indices that not only measure model discrimination capability, but also those that measure model reliability. The former is the power of the model that differentiates presences from absences; and the latter refers to the capability of the predicted probabilities to reflect the true probabilities that species occurs in individual locations. Previous studies have shown that some accuracy measures are sensitive to the prevalence of the test dataset, and that others are not. While all the reliability measures display this sensitivity to prevalence, only do some discriminatory measures fall into the latter group. Many researchers recommend the use of prevalence- insensitive measures in model accuracy assessment. However, using this approach the calibration power of the models cannot be assessed. We argue that calibration measures should also be provided in model accuracy assessments. The second aspect is to provide confidence intervals associated with the estimates of accuracy indices. Analytical methods, both parametric and nonparametric, have been introduced for constructing the confidence intervals for many accuracy indices. Computer-intensive methods (e.g. bootstrap and jackknife) can also be used to construct confidence intervals that are more attractive than the traditional analytical methods as (1) they have less statistical assumptions; and (2) they are virtually applicable to any accuracy measures. The third aspect is to provide an assessment of accuracy across a range of test data prevalence, since some accuracy indices are dependant on this quality of the test data. Test data with differing levels of prevalence will provide a range of results for the same accuracy index. Assessing the accuracy at only one level of prevalence will not provide a complete picture of the accuracy of the models. The range of test data prevalence can be set up by researchers according to their knowledge about the target species, or could be taken from the confidence interval of the population prevalence estimated from the sample data if the data can be considered as a random sample of the population. In this paper, we use an Australian native plant species, Forest Wire-grass (Tetrarrhena juncea), as an example to demonstrate our approach to more thoroughly assessing the accuracy of species distribution models. The accuracy of two models, one from a machine learning method (Random Forest, RF) and another from a statistical method (generalized additive model, GAM), were assessed using nine accuracy indices along a range of test data prevalence (i.e. the 95% confidence interval of the population prevalence estimated from the sample data using bootstrap percentile method), and a bootstrap method was used to construct the confidence intervals for the accuracy indices. With this approach, the species distribution models were thoroughly assessed." @default.
- W29991981 created "2016-06-24" @default.
- W29991981 creator A5041981330 @default.
- W29991981 creator A5059627794 @default.
- W29991981 creator A5080374123 @default.
- W29991981 date "2009-01-01" @default.
- W29991981 modified "2023-09-27" @default.
- W29991981 title "Assessing the accuracy of species distribution models more thoroughly" @default.
- W29991981 cites W1969919080 @default.
- W29991981 cites W1971278343 @default.
- W29991981 cites W1982146393 @default.
- W29991981 cites W1996102672 @default.
- W29991981 cites W1997005542 @default.
- W29991981 cites W2017383807 @default.
- W29991981 cites W2035781406 @default.
- W29991981 cites W2063393236 @default.
- W29991981 cites W2066772169 @default.
- W29991981 cites W2071230879 @default.
- W29991981 cites W2089454337 @default.
- W29991981 cites W2096913021 @default.
- W29991981 cites W2109041929 @default.
- W29991981 cites W2120160157 @default.
- W29991981 cites W2138023982 @default.
- W29991981 cites W2139731590 @default.
- W29991981 cites W2151904985 @default.
- W29991981 cites W2161548576 @default.
- W29991981 cites W2163757302 @default.
- W29991981 cites W2328176404 @default.
- W29991981 cites W2338257668 @default.
- W29991981 hasPublicationYear "2009" @default.
- W29991981 type Work @default.
- W29991981 sameAs 29991981 @default.
- W29991981 citedByCount "1" @default.
- W29991981 countsByYear W299919812016 @default.
- W29991981 crossrefType "journal-article" @default.
- W29991981 hasAuthorship W29991981A5041981330 @default.
- W29991981 hasAuthorship W29991981A5059627794 @default.
- W29991981 hasAuthorship W29991981A5080374123 @default.
- W29991981 hasConcept C102366305 @default.
- W29991981 hasConcept C105795698 @default.
- W29991981 hasConcept C117251300 @default.
- W29991981 hasConcept C121332964 @default.
- W29991981 hasConcept C124101348 @default.
- W29991981 hasConcept C127413603 @default.
- W29991981 hasConcept C149782125 @default.
- W29991981 hasConcept C163258240 @default.
- W29991981 hasConcept C165838908 @default.
- W29991981 hasConcept C185429906 @default.
- W29991981 hasConcept C21200559 @default.
- W29991981 hasConcept C24326235 @default.
- W29991981 hasConcept C2780009758 @default.
- W29991981 hasConcept C33923547 @default.
- W29991981 hasConcept C41008148 @default.
- W29991981 hasConcept C43214815 @default.
- W29991981 hasConcept C44249647 @default.
- W29991981 hasConcept C62520636 @default.
- W29991981 hasConcept C81790035 @default.
- W29991981 hasConcept C96608239 @default.
- W29991981 hasConceptScore W29991981C102366305 @default.
- W29991981 hasConceptScore W29991981C105795698 @default.
- W29991981 hasConceptScore W29991981C117251300 @default.
- W29991981 hasConceptScore W29991981C121332964 @default.
- W29991981 hasConceptScore W29991981C124101348 @default.
- W29991981 hasConceptScore W29991981C127413603 @default.
- W29991981 hasConceptScore W29991981C149782125 @default.
- W29991981 hasConceptScore W29991981C163258240 @default.
- W29991981 hasConceptScore W29991981C165838908 @default.
- W29991981 hasConceptScore W29991981C185429906 @default.
- W29991981 hasConceptScore W29991981C21200559 @default.
- W29991981 hasConceptScore W29991981C24326235 @default.
- W29991981 hasConceptScore W29991981C2780009758 @default.
- W29991981 hasConceptScore W29991981C33923547 @default.
- W29991981 hasConceptScore W29991981C41008148 @default.
- W29991981 hasConceptScore W29991981C43214815 @default.
- W29991981 hasConceptScore W29991981C44249647 @default.
- W29991981 hasConceptScore W29991981C62520636 @default.
- W29991981 hasConceptScore W29991981C81790035 @default.
- W29991981 hasConceptScore W29991981C96608239 @default.
- W29991981 hasLocation W299919811 @default.
- W29991981 hasOpenAccess W29991981 @default.
- W29991981 hasPrimaryLocation W299919811 @default.
- W29991981 hasRelatedWork W1524878255 @default.
- W29991981 hasRelatedWork W1841006742 @default.
- W29991981 hasRelatedWork W1972606868 @default.
- W29991981 hasRelatedWork W2011204754 @default.
- W29991981 hasRelatedWork W2013522313 @default.
- W29991981 hasRelatedWork W2021769665 @default.
- W29991981 hasRelatedWork W2040667072 @default.
- W29991981 hasRelatedWork W2063097769 @default.
- W29991981 hasRelatedWork W2103043899 @default.
- W29991981 hasRelatedWork W2115650277 @default.
- W29991981 hasRelatedWork W2146378450 @default.
- W29991981 hasRelatedWork W2255870007 @default.
- W29991981 hasRelatedWork W2626457513 @default.
- W29991981 hasRelatedWork W2789575653 @default.
- W29991981 hasRelatedWork W2900473858 @default.
- W29991981 hasRelatedWork W2905129832 @default.
- W29991981 hasRelatedWork W2953003791 @default.
- W29991981 hasRelatedWork W3007873442 @default.
- W29991981 hasRelatedWork W3034824980 @default.