Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999207848> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2999207848 endingPage "115785" @default.
- W2999207848 startingPage "115785" @default.
- W2999207848 abstract "Abstract In order to alleviate the overfitting problem caused by image quality evaluation (IQA) model learning under intolerably small dataset, this paper proposes a multi-feature fusion-based deep architecture for hyperspectral image quality assessment. First, eight key IQA-related features, which are descriptive to the mean noise of multi-band images, spatial correlation, inter-spectral correlation, blur, and the phase-consistent map of images, are extracted from each hyperspectral image within the dataset. Based on this, a carefully-designed generalized regression neural network (GRNN) with a limited number of parameters is hierarchically trained by the feature vectors from samples in the training IQA data set. Comprehensive experimental evaluations on the hyperspectral IQA images from the DOTA dataset and the EO-1 Hyperion dataset have shown that the proposed model can indicate the subjective/objective quality-aware images regions precisely In addition, we observe that our designed IQA method has received impressive IQA performance than the other state-of-the-art non-reference methods." @default.
- W2999207848 created "2020-01-23" @default.
- W2999207848 creator A5013881064 @default.
- W2999207848 creator A5013903881 @default.
- W2999207848 creator A5052216687 @default.
- W2999207848 creator A5059119403 @default.
- W2999207848 date "2020-04-01" @default.
- W2999207848 modified "2023-10-01" @default.
- W2999207848 title "Hyperspectral image quality evaluation using generalized regression neural network" @default.
- W2999207848 cites W1982471090 @default.
- W2999207848 cites W1999641745 @default.
- W2999207848 cites W2085704189 @default.
- W2999207848 cites W2111282613 @default.
- W2999207848 cites W2114338738 @default.
- W2999207848 cites W2124562516 @default.
- W2999207848 cites W2129644086 @default.
- W2999207848 cites W2144188273 @default.
- W2999207848 doi "https://doi.org/10.1016/j.image.2020.115785" @default.
- W2999207848 hasPublicationYear "2020" @default.
- W2999207848 type Work @default.
- W2999207848 sameAs 2999207848 @default.
- W2999207848 citedByCount "4" @default.
- W2999207848 countsByYear W29992078482021 @default.
- W2999207848 countsByYear W29992078482022 @default.
- W2999207848 crossrefType "journal-article" @default.
- W2999207848 hasAuthorship W2999207848A5013881064 @default.
- W2999207848 hasAuthorship W2999207848A5013903881 @default.
- W2999207848 hasAuthorship W2999207848A5052216687 @default.
- W2999207848 hasAuthorship W2999207848A5059119403 @default.
- W2999207848 hasConcept C105795698 @default.
- W2999207848 hasConcept C111472728 @default.
- W2999207848 hasConcept C115961682 @default.
- W2999207848 hasConcept C119857082 @default.
- W2999207848 hasConcept C138885662 @default.
- W2999207848 hasConcept C152877465 @default.
- W2999207848 hasConcept C153180895 @default.
- W2999207848 hasConcept C154945302 @default.
- W2999207848 hasConcept C159078339 @default.
- W2999207848 hasConcept C2779530757 @default.
- W2999207848 hasConcept C33923547 @default.
- W2999207848 hasConcept C41008148 @default.
- W2999207848 hasConcept C50644808 @default.
- W2999207848 hasConcept C55020928 @default.
- W2999207848 hasConcept C83546350 @default.
- W2999207848 hasConceptScore W2999207848C105795698 @default.
- W2999207848 hasConceptScore W2999207848C111472728 @default.
- W2999207848 hasConceptScore W2999207848C115961682 @default.
- W2999207848 hasConceptScore W2999207848C119857082 @default.
- W2999207848 hasConceptScore W2999207848C138885662 @default.
- W2999207848 hasConceptScore W2999207848C152877465 @default.
- W2999207848 hasConceptScore W2999207848C153180895 @default.
- W2999207848 hasConceptScore W2999207848C154945302 @default.
- W2999207848 hasConceptScore W2999207848C159078339 @default.
- W2999207848 hasConceptScore W2999207848C2779530757 @default.
- W2999207848 hasConceptScore W2999207848C33923547 @default.
- W2999207848 hasConceptScore W2999207848C41008148 @default.
- W2999207848 hasConceptScore W2999207848C50644808 @default.
- W2999207848 hasConceptScore W2999207848C55020928 @default.
- W2999207848 hasConceptScore W2999207848C83546350 @default.
- W2999207848 hasFunder F4320335777 @default.
- W2999207848 hasFunder F4320335787 @default.
- W2999207848 hasLocation W29992078481 @default.
- W2999207848 hasOpenAccess W2999207848 @default.
- W2999207848 hasPrimaryLocation W29992078481 @default.
- W2999207848 hasRelatedWork W1491778359 @default.
- W2999207848 hasRelatedWork W1869808405 @default.
- W2999207848 hasRelatedWork W2028628118 @default.
- W2999207848 hasRelatedWork W2031007444 @default.
- W2999207848 hasRelatedWork W2775464024 @default.
- W2999207848 hasRelatedWork W2783789044 @default.
- W2999207848 hasRelatedWork W2972973180 @default.
- W2999207848 hasRelatedWork W3211035526 @default.
- W2999207848 hasRelatedWork W4291701050 @default.
- W2999207848 hasRelatedWork W4293272463 @default.
- W2999207848 hasVolume "83" @default.
- W2999207848 isParatext "false" @default.
- W2999207848 isRetracted "false" @default.
- W2999207848 magId "2999207848" @default.
- W2999207848 workType "article" @default.