Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999242008> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2999242008 endingPage "103067" @default.
- W2999242008 startingPage "103067" @default.
- W2999242008 abstract "Abstract Due to their independence from environment instrumentation, Simultaneous Localization and Mapping (SLAM) based localization and navigation have received increasing attention and been widely applied for applications in the built environment and on construction sites. Compared with Lidar-based SLAM, the main concern with visual SLAM (vSLAM) is its effectiveness and robustness in challenging environments. As a major type of vSLAM algorithm, feature-based methods, including the state-of-the-art ORB-SLAM, rely on rich image features and a robust descriptor for matching feature correspondences across different image frames, which suffers from performance loss in environments with low-texture, low-structure areas (e.g., building corridors) or motion blur that are pretty common in practical applications. Regardless of being traditionally handcrafted or learned from recent data-driven methods such as convolutional neural networks (CNN), previous methods try to obtain an optimal fixed feature transform that works for any scenes. With the aim of improving tracking robustness in challenging environments, as opposed to such fixed feature presentation, this research proposes and explores a learning-based dynamic feature transform that is self-adaptive towards recently observed scenes, which we termed as Deep SAFT. This paper also presents the design details of an implementation of Deep SAFT working with ORB-SLAM and evaluates the modified algorithm on fifteen popular public dataset sequences. The valuation results prove the feasibility and effectiveness of SAFT for improving the matching performance of learning-based descriptors. The proposed SAFT can be integrated with existing feature-based vSLAM algorithms to provide more robust locating service for applications either in the built environment (such as facility management) or on construction sites (such as construction site safety, construction progress monitoring, and infrastructure inspection)." @default.
- W2999242008 created "2020-01-23" @default.
- W2999242008 creator A5003403426 @default.
- W2999242008 creator A5025475578 @default.
- W2999242008 creator A5048532240 @default.
- W2999242008 creator A5079898538 @default.
- W2999242008 date "2020-04-01" @default.
- W2999242008 modified "2023-10-01" @default.
- W2999242008 title "A scene-adaptive descriptor for visual SLAM-based locating applications in built environments" @default.
- W2999242008 cites W1967013371 @default.
- W2999242008 cites W1983602846 @default.
- W2999242008 cites W1989484209 @default.
- W2999242008 cites W2001579261 @default.
- W2999242008 cites W2004924319 @default.
- W2999242008 cites W2007795301 @default.
- W2999242008 cites W2046659441 @default.
- W2999242008 cites W2055538060 @default.
- W2999242008 cites W2064518948 @default.
- W2999242008 cites W2069479606 @default.
- W2999242008 cites W2080823437 @default.
- W2999242008 cites W2089888558 @default.
- W2999242008 cites W2098604689 @default.
- W2999242008 cites W2118104180 @default.
- W2999242008 cites W2118428504 @default.
- W2999242008 cites W2121013842 @default.
- W2999242008 cites W2130422193 @default.
- W2999242008 cites W2131744734 @default.
- W2999242008 cites W2151103935 @default.
- W2999242008 cites W2152671441 @default.
- W2999242008 cites W2170066474 @default.
- W2999242008 cites W2511538593 @default.
- W2999242008 cites W2527142681 @default.
- W2999242008 cites W2528594322 @default.
- W2999242008 cites W2766195151 @default.
- W2999242008 cites W2774823974 @default.
- W2999242008 cites W2782481820 @default.
- W2999242008 cites W2793187686 @default.
- W2999242008 cites W2794865015 @default.
- W2999242008 cites W2795699042 @default.
- W2999242008 cites W2884017585 @default.
- W2999242008 cites W2887785894 @default.
- W2999242008 cites W2896728889 @default.
- W2999242008 cites W2910088833 @default.
- W2999242008 cites W2910629888 @default.
- W2999242008 cites W2942619905 @default.
- W2999242008 cites W2988192774 @default.
- W2999242008 cites W3102327032 @default.
- W2999242008 cites W3103648783 @default.
- W2999242008 doi "https://doi.org/10.1016/j.autcon.2019.103067" @default.
- W2999242008 hasPublicationYear "2020" @default.
- W2999242008 type Work @default.
- W2999242008 sameAs 2999242008 @default.
- W2999242008 citedByCount "16" @default.
- W2999242008 countsByYear W29992420082020 @default.
- W2999242008 countsByYear W29992420082021 @default.
- W2999242008 countsByYear W29992420082022 @default.
- W2999242008 countsByYear W29992420082023 @default.
- W2999242008 crossrefType "journal-article" @default.
- W2999242008 hasAuthorship W2999242008A5003403426 @default.
- W2999242008 hasAuthorship W2999242008A5025475578 @default.
- W2999242008 hasAuthorship W2999242008A5048532240 @default.
- W2999242008 hasAuthorship W2999242008A5079898538 @default.
- W2999242008 hasConcept C121684516 @default.
- W2999242008 hasConcept C154945302 @default.
- W2999242008 hasConcept C19966478 @default.
- W2999242008 hasConcept C31972630 @default.
- W2999242008 hasConcept C41008148 @default.
- W2999242008 hasConcept C86369673 @default.
- W2999242008 hasConcept C90509273 @default.
- W2999242008 hasConceptScore W2999242008C121684516 @default.
- W2999242008 hasConceptScore W2999242008C154945302 @default.
- W2999242008 hasConceptScore W2999242008C19966478 @default.
- W2999242008 hasConceptScore W2999242008C31972630 @default.
- W2999242008 hasConceptScore W2999242008C41008148 @default.
- W2999242008 hasConceptScore W2999242008C86369673 @default.
- W2999242008 hasConceptScore W2999242008C90509273 @default.
- W2999242008 hasLocation W29992420081 @default.
- W2999242008 hasOpenAccess W2999242008 @default.
- W2999242008 hasPrimaryLocation W29992420081 @default.
- W2999242008 hasRelatedWork W2074515009 @default.
- W2999242008 hasRelatedWork W2086478527 @default.
- W2999242008 hasRelatedWork W2088888418 @default.
- W2999242008 hasRelatedWork W2154461499 @default.
- W2999242008 hasRelatedWork W2625455490 @default.
- W2999242008 hasRelatedWork W2970243024 @default.
- W2999242008 hasRelatedWork W2973077977 @default.
- W2999242008 hasRelatedWork W3013616745 @default.
- W2999242008 hasRelatedWork W4206120224 @default.
- W2999242008 hasRelatedWork W4292862563 @default.
- W2999242008 hasVolume "112" @default.
- W2999242008 isParatext "false" @default.
- W2999242008 isRetracted "false" @default.
- W2999242008 magId "2999242008" @default.
- W2999242008 workType "article" @default.