Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999291807> ?p ?o ?g. }
- W2999291807 endingPage "658" @default.
- W2999291807 startingPage "647" @default.
- W2999291807 abstract "In many areas of data science, deep neural networks (DNNs) have shown a remarkable ability to learn complex, nonlinear relationships between sets of variables. In this paper, this network architecture is applied to several different tasks relating to high-speed turbulent flows. In the first section, linear stochastic estimation (LSE) as proposed by Adrian (“On the Role of Conditional Averages in Turbulence Theory,” Symposium on Turbulence in Liquids, 1977; and “Conditional Eddies in Isotropic Turbulence,” Physics of Fluids, Vol. 22, No. 11, 1979, pp. 2065–2070) is reformulated as a machine learning problem, and the two methods are compared. Both a DNN and a LSE model are trained to estimate fluctuating pressure at a subset of locations in the near field of a Mach 0.6 jet, given the pressure measured at other locations. It is shown that DNNs exhibit a slight performance benefit over traditional LSE models on average. The second part of this paper focuses on the utilization of an artificial neural network (ANN) to predict the directional overall sound pressure level (OASPL) in the far field of a supersonic multistream jet. A database was created, describing the near-field and far-field conditions of a complex nonaxisymmetric jet flow, with Mach numbers ranging from 1.0 to 1.6. The problem was posed as a form of multivariate nonlinear regression, and an ANN was used to create a model. A feature space consisting of plausible predictors of the far-field directional OASPL was defined, based on previous fundamental studies and jet noise scaling laws. On average, the ANN was able to predict the directional far-field OASPL within 0.75 dB, surpassing original goals. In addition to these topics, some limitations and possible extensions of the methods described herein are discussed." @default.
- W2999291807 created "2020-01-23" @default.
- W2999291807 creator A5017187943 @default.
- W2999291807 creator A5037620439 @default.
- W2999291807 creator A5042449563 @default.
- W2999291807 creator A5073906673 @default.
- W2999291807 date "2020-02-01" @default.
- W2999291807 modified "2023-09-26" @default.
- W2999291807 title "Application of Artificial Neural Networks to Stochastic Estimation and Jet Noise Modeling" @default.
- W2999291807 cites W1901616594 @default.
- W2999291807 cites W1975881423 @default.
- W2999291807 cites W1997126009 @default.
- W2999291807 cites W2024018027 @default.
- W2999291807 cites W2038994670 @default.
- W2999291807 cites W2044070003 @default.
- W2999291807 cites W2047950390 @default.
- W2999291807 cites W2083454022 @default.
- W2999291807 cites W2103496339 @default.
- W2999291807 cites W2110418811 @default.
- W2999291807 cites W2143998937 @default.
- W2999291807 cites W2313795248 @default.
- W2999291807 cites W2322261300 @default.
- W2999291807 cites W2324195421 @default.
- W2999291807 cites W2534240011 @default.
- W2999291807 cites W2759717709 @default.
- W2999291807 cites W2766663326 @default.
- W2999291807 cites W2773980053 @default.
- W2999291807 cites W2783597041 @default.
- W2999291807 cites W2789517275 @default.
- W2999291807 cites W2790102940 @default.
- W2999291807 cites W2793226508 @default.
- W2999291807 cites W2795982117 @default.
- W2999291807 cites W2883445762 @default.
- W2999291807 cites W2977453053 @default.
- W2999291807 cites W3105469151 @default.
- W2999291807 cites W3106241571 @default.
- W2999291807 doi "https://doi.org/10.2514/1.j058638" @default.
- W2999291807 hasPublicationYear "2020" @default.
- W2999291807 type Work @default.
- W2999291807 sameAs 2999291807 @default.
- W2999291807 citedByCount "9" @default.
- W2999291807 countsByYear W29992918072020 @default.
- W2999291807 countsByYear W29992918072021 @default.
- W2999291807 countsByYear W29992918072022 @default.
- W2999291807 countsByYear W29992918072023 @default.
- W2999291807 crossrefType "journal-article" @default.
- W2999291807 hasAuthorship W2999291807A5017187943 @default.
- W2999291807 hasAuthorship W2999291807A5037620439 @default.
- W2999291807 hasAuthorship W2999291807A5042449563 @default.
- W2999291807 hasAuthorship W2999291807A5073906673 @default.
- W2999291807 hasBestOaLocation W29992918071 @default.
- W2999291807 hasConcept C11413529 @default.
- W2999291807 hasConcept C115961682 @default.
- W2999291807 hasConcept C119947313 @default.
- W2999291807 hasConcept C120665830 @default.
- W2999291807 hasConcept C121332964 @default.
- W2999291807 hasConcept C121864883 @default.
- W2999291807 hasConcept C154945302 @default.
- W2999291807 hasConcept C158622935 @default.
- W2999291807 hasConcept C165231844 @default.
- W2999291807 hasConcept C184050105 @default.
- W2999291807 hasConcept C196558001 @default.
- W2999291807 hasConcept C202444582 @default.
- W2999291807 hasConcept C205991772 @default.
- W2999291807 hasConcept C2778940620 @default.
- W2999291807 hasConcept C28826006 @default.
- W2999291807 hasConcept C33923547 @default.
- W2999291807 hasConcept C41008148 @default.
- W2999291807 hasConcept C50644808 @default.
- W2999291807 hasConcept C57879066 @default.
- W2999291807 hasConcept C62520636 @default.
- W2999291807 hasConcept C9652623 @default.
- W2999291807 hasConcept C99498987 @default.
- W2999291807 hasConceptScore W2999291807C11413529 @default.
- W2999291807 hasConceptScore W2999291807C115961682 @default.
- W2999291807 hasConceptScore W2999291807C119947313 @default.
- W2999291807 hasConceptScore W2999291807C120665830 @default.
- W2999291807 hasConceptScore W2999291807C121332964 @default.
- W2999291807 hasConceptScore W2999291807C121864883 @default.
- W2999291807 hasConceptScore W2999291807C154945302 @default.
- W2999291807 hasConceptScore W2999291807C158622935 @default.
- W2999291807 hasConceptScore W2999291807C165231844 @default.
- W2999291807 hasConceptScore W2999291807C184050105 @default.
- W2999291807 hasConceptScore W2999291807C196558001 @default.
- W2999291807 hasConceptScore W2999291807C202444582 @default.
- W2999291807 hasConceptScore W2999291807C205991772 @default.
- W2999291807 hasConceptScore W2999291807C2778940620 @default.
- W2999291807 hasConceptScore W2999291807C28826006 @default.
- W2999291807 hasConceptScore W2999291807C33923547 @default.
- W2999291807 hasConceptScore W2999291807C41008148 @default.
- W2999291807 hasConceptScore W2999291807C50644808 @default.
- W2999291807 hasConceptScore W2999291807C57879066 @default.
- W2999291807 hasConceptScore W2999291807C62520636 @default.
- W2999291807 hasConceptScore W2999291807C9652623 @default.
- W2999291807 hasConceptScore W2999291807C99498987 @default.
- W2999291807 hasFunder F4320309030 @default.
- W2999291807 hasFunder F4320338279 @default.
- W2999291807 hasIssue "2" @default.