Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999376617> ?p ?o ?g. }
- W2999376617 endingPage "731" @default.
- W2999376617 startingPage "731" @default.
- W2999376617 abstract "Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models." @default.
- W2999376617 created "2020-01-23" @default.
- W2999376617 creator A5012850094 @default.
- W2999376617 creator A5018351868 @default.
- W2999376617 creator A5045936239 @default.
- W2999376617 creator A5056801967 @default.
- W2999376617 creator A5067079132 @default.
- W2999376617 creator A5072746309 @default.
- W2999376617 creator A5078727796 @default.
- W2999376617 creator A5079419983 @default.
- W2999376617 creator A5086550972 @default.
- W2999376617 date "2020-01-23" @default.
- W2999376617 modified "2023-10-15" @default.
- W2999376617 title "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model" @default.
- W2999376617 cites W1605688901 @default.
- W2999376617 cites W2014510428 @default.
- W2999376617 cites W2020176002 @default.
- W2999376617 cites W2102451151 @default.
- W2999376617 cites W2148160366 @default.
- W2999376617 cites W2153476503 @default.
- W2999376617 cites W2158698691 @default.
- W2999376617 cites W2205836001 @default.
- W2999376617 cites W2287788949 @default.
- W2999376617 cites W2332483729 @default.
- W2999376617 cites W2337128475 @default.
- W2999376617 cites W2399542702 @default.
- W2999376617 cites W2499509962 @default.
- W2999376617 cites W2515502085 @default.
- W2999376617 cites W2579725890 @default.
- W2999376617 cites W2788480863 @default.
- W2999376617 cites W2791315675 @default.
- W2999376617 cites W2791453970 @default.
- W2999376617 cites W2803098482 @default.
- W2999376617 cites W2805182940 @default.
- W2999376617 cites W2895493709 @default.
- W2999376617 cites W2899547993 @default.
- W2999376617 cites W2900794383 @default.
- W2999376617 cites W2903099708 @default.
- W2999376617 cites W2913908626 @default.
- W2999376617 cites W2953505302 @default.
- W2999376617 cites W2963565281 @default.
- W2999376617 cites W2980506460 @default.
- W2999376617 cites W2982488063 @default.
- W2999376617 cites W4236137412 @default.
- W2999376617 doi "https://doi.org/10.3390/ijerph17030731" @default.
- W2999376617 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7037941" @default.
- W2999376617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31979257" @default.
- W2999376617 hasPublicationYear "2020" @default.
- W2999376617 type Work @default.
- W2999376617 sameAs 2999376617 @default.
- W2999376617 citedByCount "84" @default.
- W2999376617 countsByYear W29993766172020 @default.
- W2999376617 countsByYear W29993766172021 @default.
- W2999376617 countsByYear W29993766172022 @default.
- W2999376617 countsByYear W29993766172023 @default.
- W2999376617 crossrefType "journal-article" @default.
- W2999376617 hasAuthorship W2999376617A5012850094 @default.
- W2999376617 hasAuthorship W2999376617A5018351868 @default.
- W2999376617 hasAuthorship W2999376617A5045936239 @default.
- W2999376617 hasAuthorship W2999376617A5056801967 @default.
- W2999376617 hasAuthorship W2999376617A5067079132 @default.
- W2999376617 hasAuthorship W2999376617A5072746309 @default.
- W2999376617 hasAuthorship W2999376617A5078727796 @default.
- W2999376617 hasAuthorship W2999376617A5079419983 @default.
- W2999376617 hasAuthorship W2999376617A5086550972 @default.
- W2999376617 hasBestOaLocation W29993766171 @default.
- W2999376617 hasConcept C113174947 @default.
- W2999376617 hasConcept C119857082 @default.
- W2999376617 hasConcept C12267149 @default.
- W2999376617 hasConcept C126322002 @default.
- W2999376617 hasConcept C126838900 @default.
- W2999376617 hasConcept C127413603 @default.
- W2999376617 hasConcept C134306372 @default.
- W2999376617 hasConcept C153180895 @default.
- W2999376617 hasConcept C154945302 @default.
- W2999376617 hasConcept C16023879 @default.
- W2999376617 hasConcept C164705383 @default.
- W2999376617 hasConcept C169258074 @default.
- W2999376617 hasConcept C189430467 @default.
- W2999376617 hasConcept C194789388 @default.
- W2999376617 hasConcept C199639397 @default.
- W2999376617 hasConcept C2778213512 @default.
- W2999376617 hasConcept C2779134260 @default.
- W2999376617 hasConcept C3019004856 @default.
- W2999376617 hasConcept C33923547 @default.
- W2999376617 hasConcept C41008148 @default.
- W2999376617 hasConcept C500558357 @default.
- W2999376617 hasConcept C56289965 @default.
- W2999376617 hasConcept C71924100 @default.
- W2999376617 hasConcept C84525736 @default.
- W2999376617 hasConceptScore W2999376617C113174947 @default.
- W2999376617 hasConceptScore W2999376617C119857082 @default.
- W2999376617 hasConceptScore W2999376617C12267149 @default.
- W2999376617 hasConceptScore W2999376617C126322002 @default.
- W2999376617 hasConceptScore W2999376617C126838900 @default.
- W2999376617 hasConceptScore W2999376617C127413603 @default.
- W2999376617 hasConceptScore W2999376617C134306372 @default.
- W2999376617 hasConceptScore W2999376617C153180895 @default.