Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999406896> ?p ?o ?g. }
- W2999406896 endingPage "117267" @default.
- W2999406896 startingPage "117267" @default.
- W2999406896 abstract "Understanding spatial variation of air pollution is critical for public health assessments. Land Use Regression (LUR) models have been used increasingly for modeling small-scale spatial variation in air pollution concentrations. However, they have limited application in China due to the lack of spatially resolved data. Based on purpose-designed monitoring networks, this study developed LUR models to predict fine particulate matter (PM2.5), black carbon (BC) and nitrogen dioxide (NO2) exposure and to identify their potential outdoor-origin sources within an urban/rural region, using Taizhou, China as a case study. Two one-week integrated samples were collected at 30 PM2.5 (BC) sites and 45 NO2 sites in each two distinct seasons. Samples of 1/3 of the sites were collected simultaneously. Annual adjusted average was calculated and regressed against pre-selected GIS-derived predictor variables in a multivariate regression model. LUR explained 65% of the spatial variability in PM2.5, 78% in BC and 73% in NO2. Mean (±Standard Deviation) of predicted PM2.5, BC and NO2 exposure levels were 48.3 (±6.3) μg/m3, 7.5 (±1.4) μg/m3 and 27.3 (±8.2) μg/m3, respectively. Weak spatial corrections (Pearson r = 0.05–0.25) among three pollutants were observed, indicating the presence of different sources. Regression results showed that PM2.5, BC and NO2 levels were positively associated with traffic variables. The former two also increased with farm land use; and higher NO2 levels were associated with larger industrial land use. The three pollutants were correlated with sources at a scale of ≤5 km and even smaller scales (100–700m) were found for BC and NO2. We concluded that based on a purpose-designed monitoring network, LUR model can be applied to predict PM2.5, NO2 and BC concentrations in urban/rural settings of China. Our findings highlighted important contributors to within-city heterogeneity in outdoor-generated exposure, and indicated traffic, industry and agriculture may significantly contribute to PM2.5, NO2 and BC concentrations." @default.
- W2999406896 created "2020-01-23" @default.
- W2999406896 creator A5009590736 @default.
- W2999406896 creator A5013092108 @default.
- W2999406896 creator A5013523273 @default.
- W2999406896 creator A5014385401 @default.
- W2999406896 creator A5016576057 @default.
- W2999406896 creator A5025397355 @default.
- W2999406896 creator A5026355547 @default.
- W2999406896 creator A5036569172 @default.
- W2999406896 creator A5041020815 @default.
- W2999406896 creator A5043445202 @default.
- W2999406896 creator A5059910832 @default.
- W2999406896 creator A5064464116 @default.
- W2999406896 creator A5064968910 @default.
- W2999406896 creator A5085035359 @default.
- W2999406896 date "2020-02-01" @default.
- W2999406896 modified "2023-10-18" @default.
- W2999406896 title "Application of land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations" @default.
- W2999406896 cites W1991350060 @default.
- W2999406896 cites W1993983873 @default.
- W2999406896 cites W2013938126 @default.
- W2999406896 cites W2030448148 @default.
- W2999406896 cites W2043110791 @default.
- W2999406896 cites W2045038944 @default.
- W2999406896 cites W2047607205 @default.
- W2999406896 cites W2050343952 @default.
- W2999406896 cites W2053255375 @default.
- W2999406896 cites W2056820667 @default.
- W2999406896 cites W2066544083 @default.
- W2999406896 cites W2069977802 @default.
- W2999406896 cites W2077915483 @default.
- W2999406896 cites W2078732381 @default.
- W2999406896 cites W2084554826 @default.
- W2999406896 cites W2089791972 @default.
- W2999406896 cites W2098637521 @default.
- W2999406896 cites W2115569900 @default.
- W2999406896 cites W2116322149 @default.
- W2999406896 cites W2124044364 @default.
- W2999406896 cites W2136915828 @default.
- W2999406896 cites W2138085930 @default.
- W2999406896 cites W2151302463 @default.
- W2999406896 cites W2161044029 @default.
- W2999406896 cites W2166604768 @default.
- W2999406896 cites W2167522954 @default.
- W2999406896 cites W2168634228 @default.
- W2999406896 cites W2191373656 @default.
- W2999406896 cites W2308284328 @default.
- W2999406896 cites W2323483937 @default.
- W2999406896 cites W2335211497 @default.
- W2999406896 cites W2399184460 @default.
- W2999406896 cites W2592449059 @default.
- W2999406896 cites W2594967439 @default.
- W2999406896 cites W2735239992 @default.
- W2999406896 cites W2800030845 @default.
- W2999406896 cites W2810192360 @default.
- W2999406896 cites W2886886267 @default.
- W2999406896 cites W2925250957 @default.
- W2999406896 doi "https://doi.org/10.1016/j.atmosenv.2020.117267" @default.
- W2999406896 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8320335" @default.
- W2999406896 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34335073" @default.
- W2999406896 hasPublicationYear "2020" @default.
- W2999406896 type Work @default.
- W2999406896 sameAs 2999406896 @default.
- W2999406896 citedByCount "17" @default.
- W2999406896 countsByYear W29994068962020 @default.
- W2999406896 countsByYear W29994068962021 @default.
- W2999406896 countsByYear W29994068962022 @default.
- W2999406896 countsByYear W29994068962023 @default.
- W2999406896 crossrefType "journal-article" @default.
- W2999406896 hasAuthorship W2999406896A5009590736 @default.
- W2999406896 hasAuthorship W2999406896A5013092108 @default.
- W2999406896 hasAuthorship W2999406896A5013523273 @default.
- W2999406896 hasAuthorship W2999406896A5014385401 @default.
- W2999406896 hasAuthorship W2999406896A5016576057 @default.
- W2999406896 hasAuthorship W2999406896A5025397355 @default.
- W2999406896 hasAuthorship W2999406896A5026355547 @default.
- W2999406896 hasAuthorship W2999406896A5036569172 @default.
- W2999406896 hasAuthorship W2999406896A5041020815 @default.
- W2999406896 hasAuthorship W2999406896A5043445202 @default.
- W2999406896 hasAuthorship W2999406896A5059910832 @default.
- W2999406896 hasAuthorship W2999406896A5064464116 @default.
- W2999406896 hasAuthorship W2999406896A5064968910 @default.
- W2999406896 hasAuthorship W2999406896A5085035359 @default.
- W2999406896 hasBestOaLocation W29994068962 @default.
- W2999406896 hasConcept C105795698 @default.
- W2999406896 hasConcept C127313418 @default.
- W2999406896 hasConcept C152877465 @default.
- W2999406896 hasConcept C153294291 @default.
- W2999406896 hasConcept C161584116 @default.
- W2999406896 hasConcept C178790620 @default.
- W2999406896 hasConcept C185592680 @default.
- W2999406896 hasConcept C18903297 @default.
- W2999406896 hasConcept C205649164 @default.
- W2999406896 hasConcept C24245907 @default.
- W2999406896 hasConcept C2780723490 @default.
- W2999406896 hasConcept C33923547 @default.
- W2999406896 hasConcept C39432304 @default.