Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999421831> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2999421831 endingPage "52" @default.
- W2999421831 startingPage "37" @default.
- W2999421831 abstract "<p indent=0mm>Most natural biomaterials have an intrinsic ability to self-heal upon encountering damages. Therefore, living beings can recover when wounded. To mimic the self-healing properties of natural biomaterials and prolong the lifetime of the material in various applications, many synthetic self-healing polymers which can repair the internal or external damages have been developed. So far, a lot of synthetic polymers have been designed to self-heal by encapsulating healing agents (in microcapsules or microvascular networks, classified as extrinsic self-healing) or incorporating dynamic chemical bonds (including reversible covalent bonds such as alkoxyamine, disulfide, boronic ester and boroxine bonds or bonds formed by Diels-Alder reaction, or non-covalent interactions such as hydrogen bonds, π-π stacking interactions, host-guest interactions, ionic interactions and metal-ligand interactions, classified as intrinsic self-healing) into the polymer matrix. Due to the consumption of the encapsulated agents, the repair in extrinsic self-healing system is generally not repeatable. Therefore, intrinsic self-healing systems based on reversible covalent bonds or noncovalent interactions are preferred. Highly stretchable self-healing polymers are desirable due to their widespread application in flexible and stretchable electronic devices, including transistors, sensors, energy-storage devices, and light-emitting diodes (LEDs). However, the design of such materials is a nontrivial task. Elastomers are typically made up of cross-linked networks of long chains of polymers. The elasticity arises from the ability of the chains to reconfigure under an applied tension. The crosslinking sites between the long polymer chains ensure that the network returns to its original configuration when the tension is removed. Therefore, the cross-linking bonds should be as strong as possible, otherwise they will be disassociated upon tension and a permanent deformation will be resulted. However, for an autonomous self-healing material, weak dynamic bonds should present as crosslinking sites so that they will break first upon damaging and reform to heal. Polymers crosslinked by weak dynamic bonds tend to be soft and viscoelastic. Therefore, it is highly challenging to design materials that simultaneously exhibit good elasticity and autonomous self-healing properties. In this review, we highlighted the recent advances in design and synthesis of highly stretchable self-healing materials. The main strategy for designing self-healing materials, including (1) double network; (2) incorporating nano-fillers; (3) inducing multi-phase separation; (4) introducing sacrificial bonds; (5) increasing the energy of dynamic bonds, have been described. From this review, one could witness that the combination of high stretchability and self-healing can be realized by various strategies. However, it should be noted that most of the reported highly stretchable self-healing polymers exhibit slow elastic recovery behavior, i.e., they can only recover to their original length after relaxation for a long time after stretching. This is reasonable, because the weak and dynamic dynamic bonds between polymer chains break more readily upon stretching but it takes some time for them to reform, which invariably leads to poor recovery behavior. Therefore, it is still challenging to create materials that have both good elastic performance and autonomous healing capability. If self-healing polymer with fast elastic recovery upon stretching can be developed through continuing efforts of scientists, more widespread applications of self-healing materials can be expected." @default.
- W2999421831 created "2020-01-23" @default.
- W2999421831 creator A5062607840 @default.
- W2999421831 creator A5081169399 @default.
- W2999421831 creator A5083398238 @default.
- W2999421831 date "2019-10-12" @default.
- W2999421831 modified "2023-10-04" @default.
- W2999421831 title "Design and synthesis of highly stretchable self-healing materials" @default.
- W2999421831 doi "https://doi.org/10.1360/tb-2019-0427" @default.
- W2999421831 hasPublicationYear "2019" @default.
- W2999421831 type Work @default.
- W2999421831 sameAs 2999421831 @default.
- W2999421831 citedByCount "0" @default.
- W2999421831 crossrefType "journal-article" @default.
- W2999421831 hasAuthorship W2999421831A5062607840 @default.
- W2999421831 hasAuthorship W2999421831A5081169399 @default.
- W2999421831 hasAuthorship W2999421831A5083398238 @default.
- W2999421831 hasBestOaLocation W29994218311 @default.
- W2999421831 hasConcept C112887158 @default.
- W2999421831 hasConcept C126348684 @default.
- W2999421831 hasConcept C137277065 @default.
- W2999421831 hasConcept C142724271 @default.
- W2999421831 hasConcept C145148216 @default.
- W2999421831 hasConcept C159985019 @default.
- W2999421831 hasConcept C171250308 @default.
- W2999421831 hasConcept C178790620 @default.
- W2999421831 hasConcept C180577832 @default.
- W2999421831 hasConcept C185592680 @default.
- W2999421831 hasConcept C192562407 @default.
- W2999421831 hasConcept C204787440 @default.
- W2999421831 hasConcept C2182769 @default.
- W2999421831 hasConcept C26856880 @default.
- W2999421831 hasConcept C2778210392 @default.
- W2999421831 hasConcept C32909587 @default.
- W2999421831 hasConcept C33347731 @default.
- W2999421831 hasConcept C38052585 @default.
- W2999421831 hasConcept C521977710 @default.
- W2999421831 hasConcept C60938931 @default.
- W2999421831 hasConcept C71924100 @default.
- W2999421831 hasConceptScore W2999421831C112887158 @default.
- W2999421831 hasConceptScore W2999421831C126348684 @default.
- W2999421831 hasConceptScore W2999421831C137277065 @default.
- W2999421831 hasConceptScore W2999421831C142724271 @default.
- W2999421831 hasConceptScore W2999421831C145148216 @default.
- W2999421831 hasConceptScore W2999421831C159985019 @default.
- W2999421831 hasConceptScore W2999421831C171250308 @default.
- W2999421831 hasConceptScore W2999421831C178790620 @default.
- W2999421831 hasConceptScore W2999421831C180577832 @default.
- W2999421831 hasConceptScore W2999421831C185592680 @default.
- W2999421831 hasConceptScore W2999421831C192562407 @default.
- W2999421831 hasConceptScore W2999421831C204787440 @default.
- W2999421831 hasConceptScore W2999421831C2182769 @default.
- W2999421831 hasConceptScore W2999421831C26856880 @default.
- W2999421831 hasConceptScore W2999421831C2778210392 @default.
- W2999421831 hasConceptScore W2999421831C32909587 @default.
- W2999421831 hasConceptScore W2999421831C33347731 @default.
- W2999421831 hasConceptScore W2999421831C38052585 @default.
- W2999421831 hasConceptScore W2999421831C521977710 @default.
- W2999421831 hasConceptScore W2999421831C60938931 @default.
- W2999421831 hasConceptScore W2999421831C71924100 @default.
- W2999421831 hasIssue "1" @default.
- W2999421831 hasLocation W29994218311 @default.
- W2999421831 hasOpenAccess W2999421831 @default.
- W2999421831 hasPrimaryLocation W29994218311 @default.
- W2999421831 hasRelatedWork W2011094304 @default.
- W2999421831 hasRelatedWork W2374836366 @default.
- W2999421831 hasRelatedWork W2482661672 @default.
- W2999421831 hasRelatedWork W2761019197 @default.
- W2999421831 hasRelatedWork W2781651916 @default.
- W2999421831 hasRelatedWork W2890731477 @default.
- W2999421831 hasRelatedWork W2949306829 @default.
- W2999421831 hasRelatedWork W4231666446 @default.
- W2999421831 hasRelatedWork W4304620250 @default.
- W2999421831 hasRelatedWork W2482958205 @default.
- W2999421831 hasVolume "65" @default.
- W2999421831 isParatext "false" @default.
- W2999421831 isRetracted "false" @default.
- W2999421831 magId "2999421831" @default.
- W2999421831 workType "article" @default.