Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999491640> ?p ?o ?g. }
- W2999491640 endingPage "6329" @default.
- W2999491640 startingPage "6319" @default.
- W2999491640 abstract "Mining the relationship structures among the investors plays a vital role in promoting economic development as well as preventing financial risks, especially in the context of big data. This article proposes fast networking approaches from investment big data to explore three underlying structures, namely, investment pedigrees, investment groups, and structural holes. Inspired by disjoint sets and path compression, we first present a pedigree classification algorithm to identify investment pedigrees. Second, through introducing a pruning strategy and a data structure termed as “2-tuple list,” we develop a novel linear-time structure mining algorithm in network (SMAN) for investigating investment groups and structural holes from the investment pedigree. Finally, we show that our SMAN has higher clustering accuracy and efficiency than other existing algorithms on a variety of real-world tasks in terms of normalized mutual information (NMI) values. Our method is particularly well suited for mining the underlying structures from investment big data." @default.
- W2999491640 created "2020-01-23" @default.
- W2999491640 creator A5011877804 @default.
- W2999491640 creator A5023765730 @default.
- W2999491640 creator A5030728768 @default.
- W2999491640 creator A5032198957 @default.
- W2999491640 creator A5034233343 @default.
- W2999491640 creator A5039907870 @default.
- W2999491640 date "2021-10-01" @default.
- W2999491640 modified "2023-10-17" @default.
- W2999491640 title "Novel Fast Networking Approaches Mining Underlying Structures From Investment Big Data" @default.
- W2999491640 cites W1522289436 @default.
- W2999491640 cites W1573982677 @default.
- W2999491640 cites W1868111879 @default.
- W2999491640 cites W1968914532 @default.
- W2999491640 cites W1969973020 @default.
- W2999491640 cites W1982635649 @default.
- W2999491640 cites W1982957931 @default.
- W2999491640 cites W1985184479 @default.
- W2999491640 cites W1994002853 @default.
- W2999491640 cites W1998124720 @default.
- W2999491640 cites W2002779084 @default.
- W2999491640 cites W2007954020 @default.
- W2999491640 cites W2017987256 @default.
- W2999491640 cites W2033390315 @default.
- W2999491640 cites W2040420521 @default.
- W2999491640 cites W2056508960 @default.
- W2999491640 cites W2062190797 @default.
- W2999491640 cites W2095293504 @default.
- W2999491640 cites W2103550381 @default.
- W2999491640 cites W2109726592 @default.
- W2999491640 cites W2127063935 @default.
- W2999491640 cites W2131841184 @default.
- W2999491640 cites W2134008243 @default.
- W2999491640 cites W2138144286 @default.
- W2999491640 cites W2173587936 @default.
- W2999491640 cites W2181144303 @default.
- W2999491640 cites W2243560673 @default.
- W2999491640 cites W2342476492 @default.
- W2999491640 cites W2536028909 @default.
- W2999491640 cites W2550561679 @default.
- W2999491640 cites W2566239358 @default.
- W2999491640 cites W2573426660 @default.
- W2999491640 cites W2573735949 @default.
- W2999491640 cites W2592380430 @default.
- W2999491640 cites W2752382243 @default.
- W2999491640 cites W2762115787 @default.
- W2999491640 cites W2767603684 @default.
- W2999491640 cites W2769157493 @default.
- W2999491640 cites W2775649878 @default.
- W2999491640 cites W2781951010 @default.
- W2999491640 cites W2800142148 @default.
- W2999491640 cites W2885972824 @default.
- W2999491640 cites W2905573247 @default.
- W2999491640 cites W2918988263 @default.
- W2999491640 cites W2921596575 @default.
- W2999491640 cites W2928261986 @default.
- W2999491640 cites W3104221309 @default.
- W2999491640 cites W3105517623 @default.
- W2999491640 cites W3123402595 @default.
- W2999491640 doi "https://doi.org/10.1109/tsmc.2019.2961378" @default.
- W2999491640 hasPublicationYear "2021" @default.
- W2999491640 type Work @default.
- W2999491640 sameAs 2999491640 @default.
- W2999491640 citedByCount "8" @default.
- W2999491640 countsByYear W29994916402020 @default.
- W2999491640 countsByYear W29994916402022 @default.
- W2999491640 countsByYear W29994916402023 @default.
- W2999491640 crossrefType "journal-article" @default.
- W2999491640 hasAuthorship W2999491640A5011877804 @default.
- W2999491640 hasAuthorship W2999491640A5023765730 @default.
- W2999491640 hasAuthorship W2999491640A5030728768 @default.
- W2999491640 hasAuthorship W2999491640A5032198957 @default.
- W2999491640 hasAuthorship W2999491640A5034233343 @default.
- W2999491640 hasAuthorship W2999491640A5039907870 @default.
- W2999491640 hasConcept C108010975 @default.
- W2999491640 hasConcept C114614502 @default.
- W2999491640 hasConcept C124101348 @default.
- W2999491640 hasConcept C127413603 @default.
- W2999491640 hasConcept C136197465 @default.
- W2999491640 hasConcept C154945302 @default.
- W2999491640 hasConcept C166957645 @default.
- W2999491640 hasConcept C17744445 @default.
- W2999491640 hasConcept C199539241 @default.
- W2999491640 hasConcept C205649164 @default.
- W2999491640 hasConcept C2522767166 @default.
- W2999491640 hasConcept C27548731 @default.
- W2999491640 hasConcept C2779343474 @default.
- W2999491640 hasConcept C33923547 @default.
- W2999491640 hasConcept C41008148 @default.
- W2999491640 hasConcept C45340560 @default.
- W2999491640 hasConcept C62611344 @default.
- W2999491640 hasConcept C6557445 @default.
- W2999491640 hasConcept C66938386 @default.
- W2999491640 hasConcept C73555534 @default.
- W2999491640 hasConcept C75684735 @default.
- W2999491640 hasConcept C86803240 @default.
- W2999491640 hasConcept C94625758 @default.