Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999491882> ?p ?o ?g. }
- W2999491882 endingPage "105206" @default.
- W2999491882 startingPage "105206" @default.
- W2999491882 abstract "Accurate prediction of crop actual evapotranspiration (ETc) has great significance in designing irrigation plans and improving the water-resource use efficiency. However, existing experiment methods are either expensive or labor-costly, and the crop-coefficient (Kc) approach always results in high errors in calculating ETc, especially for nonstandard conditions like drip irrigation under plastic-film mulch. In this study, a Temporal Convolution Network (TCN) with two engineering methods (Principal Component Analysis (PCA) and Maximal Information Coefficient (MIC)) was developed to predict ETc using a two-year dataset from lysimeters for maize under drip irrigation with film mulch. The TCN models comprised of Long Short-Term Memory Networks (LSTM) and Deep Neural Networks (DNN). To further test the results of the TCN models, they were compared in predicting Kc values with FAO-56 Kc values in the literature. The results suggested that plant height, mean temperature, maximal temperature, relative humidity, solar radiation, leaf-area index, and soil temperature are the seven most important features affecting maize evapotranspiration. TCN models all performed well in predicting ETc, with R2 in the range of 0.91–0.95, MSE 0.144–0.296 mm/d, and MAE 0.309–0.434 mm/d. Compared with the LSTM and DNN models, TCN with all input features (TCN-all) improved R2 by 0.13 and 0.06, respectively, and decreased MSE and MAE by 0.402 and 0.233 mm/d, and 0.187 and 0.153 mm/d, respectively. TCNs with features selected by the PCA and MIC methods both outperformed the PCA-based LSTM and DNN models, and the MIC-based LSTM and DNN models. Kc values predicted by the TCN-all model were closer to the actual Kc value than those modified by FAO-56." @default.
- W2999491882 created "2020-01-23" @default.
- W2999491882 creator A5002182802 @default.
- W2999491882 creator A5048060231 @default.
- W2999491882 creator A5065999494 @default.
- W2999491882 creator A5068521890 @default.
- W2999491882 creator A5076701232 @default.
- W2999491882 date "2020-02-01" @default.
- W2999491882 modified "2023-10-16" @default.
- W2999491882 title "Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation" @default.
- W2999491882 cites W1974419218 @default.
- W2999491882 cites W1985052984 @default.
- W2999491882 cites W1992656882 @default.
- W2999491882 cites W2006627731 @default.
- W2999491882 cites W2012206420 @default.
- W2999491882 cites W2018704760 @default.
- W2999491882 cites W2021432630 @default.
- W2999491882 cites W2037855854 @default.
- W2999491882 cites W2050565203 @default.
- W2999491882 cites W2053068717 @default.
- W2999491882 cites W2071408164 @default.
- W2999491882 cites W2081712988 @default.
- W2999491882 cites W2084165529 @default.
- W2999491882 cites W2089468765 @default.
- W2999491882 cites W2093905759 @default.
- W2999491882 cites W2165700458 @default.
- W2999491882 cites W2187873394 @default.
- W2999491882 cites W2290684944 @default.
- W2999491882 cites W2314101917 @default.
- W2999491882 cites W2603417106 @default.
- W2999491882 cites W2770030938 @default.
- W2999491882 cites W2799456846 @default.
- W2999491882 cites W2802436364 @default.
- W2999491882 doi "https://doi.org/10.1016/j.compag.2019.105206" @default.
- W2999491882 hasPublicationYear "2020" @default.
- W2999491882 type Work @default.
- W2999491882 sameAs 2999491882 @default.
- W2999491882 citedByCount "35" @default.
- W2999491882 countsByYear W29994918822020 @default.
- W2999491882 countsByYear W29994918822021 @default.
- W2999491882 countsByYear W29994918822022 @default.
- W2999491882 countsByYear W29994918822023 @default.
- W2999491882 crossrefType "journal-article" @default.
- W2999491882 hasAuthorship W2999491882A5002182802 @default.
- W2999491882 hasAuthorship W2999491882A5048060231 @default.
- W2999491882 hasAuthorship W2999491882A5065999494 @default.
- W2999491882 hasAuthorship W2999491882A5068521890 @default.
- W2999491882 hasAuthorship W2999491882A5076701232 @default.
- W2999491882 hasBestOaLocation W29994918821 @default.
- W2999491882 hasConcept C105795698 @default.
- W2999491882 hasConcept C152453397 @default.
- W2999491882 hasConcept C159390177 @default.
- W2999491882 hasConcept C159750122 @default.
- W2999491882 hasConcept C175092762 @default.
- W2999491882 hasConcept C176783924 @default.
- W2999491882 hasConcept C18903297 @default.
- W2999491882 hasConcept C27438332 @default.
- W2999491882 hasConcept C33923547 @default.
- W2999491882 hasConcept C39432304 @default.
- W2999491882 hasConcept C6557445 @default.
- W2999491882 hasConcept C72551326 @default.
- W2999491882 hasConcept C85871539 @default.
- W2999491882 hasConcept C86803240 @default.
- W2999491882 hasConcept C88862950 @default.
- W2999491882 hasConceptScore W2999491882C105795698 @default.
- W2999491882 hasConceptScore W2999491882C152453397 @default.
- W2999491882 hasConceptScore W2999491882C159390177 @default.
- W2999491882 hasConceptScore W2999491882C159750122 @default.
- W2999491882 hasConceptScore W2999491882C175092762 @default.
- W2999491882 hasConceptScore W2999491882C176783924 @default.
- W2999491882 hasConceptScore W2999491882C18903297 @default.
- W2999491882 hasConceptScore W2999491882C27438332 @default.
- W2999491882 hasConceptScore W2999491882C33923547 @default.
- W2999491882 hasConceptScore W2999491882C39432304 @default.
- W2999491882 hasConceptScore W2999491882C6557445 @default.
- W2999491882 hasConceptScore W2999491882C72551326 @default.
- W2999491882 hasConceptScore W2999491882C85871539 @default.
- W2999491882 hasConceptScore W2999491882C86803240 @default.
- W2999491882 hasConceptScore W2999491882C88862950 @default.
- W2999491882 hasFunder F4320308812 @default.
- W2999491882 hasFunder F4320321001 @default.
- W2999491882 hasFunder F4320323086 @default.
- W2999491882 hasFunder F4320335581 @default.
- W2999491882 hasFunder F4320337504 @default.
- W2999491882 hasLocation W29994918821 @default.
- W2999491882 hasLocation W29994918822 @default.
- W2999491882 hasOpenAccess W2999491882 @default.
- W2999491882 hasPrimaryLocation W29994918821 @default.
- W2999491882 hasRelatedWork W1981286833 @default.
- W2999491882 hasRelatedWork W1981310265 @default.
- W2999491882 hasRelatedWork W2021441147 @default.
- W2999491882 hasRelatedWork W2080240160 @default.
- W2999491882 hasRelatedWork W2081712988 @default.
- W2999491882 hasRelatedWork W2921990761 @default.
- W2999491882 hasRelatedWork W3021776095 @default.
- W2999491882 hasRelatedWork W3157067763 @default.
- W2999491882 hasRelatedWork W4379646979 @default.
- W2999491882 hasRelatedWork W2279395576 @default.