Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999512249> ?p ?o ?g. }
- W2999512249 abstract "This paper addresses the problem of short-term traffic prediction for signalized traffic operations management. Specifically, we focus on predicting sensor states in high-resolution (second-by-second). This contrasts with traditional traffic forecasting problems, which have focused on predicting aggregated traffic variables, typically over intervals that are no shorter than 5 minutes. Our contributions can be summarized as offering three insights: first, we show how the prediction problem can be modeled as a matrix completion problem. Second, we employ a block-coordinate descent algorithm and demonstrate that the algorithm converges in sub-linear time to a block coordinate-wise optimizer. This allows us to capitalize on the bigness of high-resolution data in a computationally feasible way. Third, we develop an ensemble learning (or adaptive boosting) approach to reduce the training error to within any arbitrary error threshold. The latter utilizes past days so that the boosting can be interpreted as capturing periodic patterns in the data. The performance of the proposed method is analyzed theoretically and tested empirically using both simulated data and a real-world high-resolution traffic dataset from Abu Dhabi, UAE. Our experimental results show that the proposed method outperforms other state-of-the-art algorithms." @default.
- W2999512249 created "2020-01-23" @default.
- W2999512249 creator A5027023288 @default.
- W2999512249 creator A5058180781 @default.
- W2999512249 creator A5061466757 @default.
- W2999512249 date "2020-01-08" @default.
- W2999512249 modified "2023-09-28" @default.
- W2999512249 title "Nonlinear Traffic Prediction as a Matrix Completion Problem with Ensemble Learning" @default.
- W2999512249 cites W1483696838 @default.
- W2999512249 cites W1506345240 @default.
- W2999512249 cites W1550520175 @default.
- W2999512249 cites W1590072560 @default.
- W2999512249 cites W1596717185 @default.
- W2999512249 cites W1869778509 @default.
- W2999512249 cites W1900820545 @default.
- W2999512249 cites W1964357740 @default.
- W2999512249 cites W1965792011 @default.
- W2999512249 cites W1968154520 @default.
- W2999512249 cites W1969973572 @default.
- W2999512249 cites W1973943669 @default.
- W2999512249 cites W1978926395 @default.
- W2999512249 cites W1982978808 @default.
- W2999512249 cites W1983025701 @default.
- W2999512249 cites W1984969638 @default.
- W2999512249 cites W1988790447 @default.
- W2999512249 cites W198940666 @default.
- W2999512249 cites W1993147024 @default.
- W2999512249 cites W1995727034 @default.
- W2999512249 cites W1996851706 @default.
- W2999512249 cites W2004105175 @default.
- W2999512249 cites W2004353783 @default.
- W2999512249 cites W2007099606 @default.
- W2999512249 cites W2010518210 @default.
- W2999512249 cites W2021891941 @default.
- W2999512249 cites W2023901033 @default.
- W2999512249 cites W2027392238 @default.
- W2999512249 cites W2036785686 @default.
- W2999512249 cites W2037764370 @default.
- W2999512249 cites W2047251773 @default.
- W2999512249 cites W2055493058 @default.
- W2999512249 cites W2069929199 @default.
- W2999512249 cites W2072680911 @default.
- W2999512249 cites W2084629194 @default.
- W2999512249 cites W2090880284 @default.
- W2999512249 cites W2091709668 @default.
- W2999512249 cites W2091941120 @default.
- W2999512249 cites W2093715353 @default.
- W2999512249 cites W2094350745 @default.
- W2999512249 cites W2095996755 @default.
- W2999512249 cites W2097360283 @default.
- W2999512249 cites W2106005123 @default.
- W2999512249 cites W2118321966 @default.
- W2999512249 cites W2118550318 @default.
- W2999512249 cites W2131739422 @default.
- W2999512249 cites W2134332047 @default.
- W2999512249 cites W2135410644 @default.
- W2999512249 cites W2135604164 @default.
- W2999512249 cites W2142792039 @default.
- W2999512249 cites W2148068702 @default.
- W2999512249 cites W2148365748 @default.
- W2999512249 cites W2151066547 @default.
- W2999512249 cites W2152836620 @default.
- W2999512249 cites W2156909104 @default.
- W2999512249 cites W2160569988 @default.
- W2999512249 cites W2169761784 @default.
- W2999512249 cites W2169963673 @default.
- W2999512249 cites W2270252036 @default.
- W2999512249 cites W2342643507 @default.
- W2999512249 cites W2378796720 @default.
- W2999512249 cites W2579495707 @default.
- W2999512249 cites W2599810241 @default.
- W2999512249 cites W2605264395 @default.
- W2999512249 cites W2609663244 @default.
- W2999512249 cites W2611328865 @default.
- W2999512249 cites W2751584934 @default.
- W2999512249 cites W2775717462 @default.
- W2999512249 cites W2799184571 @default.
- W2999512249 cites W2809193237 @default.
- W2999512249 cites W2810481295 @default.
- W2999512249 cites W2903383997 @default.
- W2999512249 cites W2913230672 @default.
- W2999512249 cites W2916664939 @default.
- W2999512249 cites W2971289541 @default.
- W2999512249 cites W2999051423 @default.
- W2999512249 cites W3006180391 @default.
- W2999512249 cites W3015533371 @default.
- W2999512249 cites W3037447858 @default.
- W2999512249 cites W3128050555 @default.
- W2999512249 cites W3158098938 @default.
- W2999512249 cites W3175417087 @default.
- W2999512249 cites W46781071 @default.
- W2999512249 hasPublicationYear "2020" @default.
- W2999512249 type Work @default.
- W2999512249 sameAs 2999512249 @default.
- W2999512249 citedByCount "2" @default.
- W2999512249 countsByYear W29995122492021 @default.
- W2999512249 crossrefType "posted-content" @default.
- W2999512249 hasAuthorship W2999512249A5027023288 @default.
- W2999512249 hasAuthorship W2999512249A5058180781 @default.
- W2999512249 hasAuthorship W2999512249A5061466757 @default.