Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999536074> ?p ?o ?g. }
- W2999536074 endingPage "2119" @default.
- W2999536074 startingPage "2115" @default.
- W2999536074 abstract "Nowadays, deep learning (DM) and tensor theory have become research hotspot in hyperspectral images (HSIs) processing. In this letter, transferred convolutional neural network (CNN) based on tensor (TCNNT) is proposed for hyperspectral anomaly detection (AD). TCNNT is an unsupervised DM framework and utilizes tensor structure to extract the spatial and spectral information of HSI effectively. First, the test tensor block centered at the test point is regarded as a tensor convolution kernel to convolve with the dictionary tensor blocks to extract deep feature, and the difference between the test tensor and the feature tensor is obtained. Then, the local neighboring tensor blocks are also regarded as tensor convolution kernels to convolve with the dictionary tensor blocks to extract deep feature, and the difference between the local neighboring tensor and the feature tensor is obtained. Finally, an adaptive model based on the above two differences is proposed for the detection output. Experiments conducted on one synthetic HSI and two real HSIs present superior performance of the proposed TCNNT." @default.
- W2999536074 created "2020-01-23" @default.
- W2999536074 creator A5026198068 @default.
- W2999536074 creator A5085798243 @default.
- W2999536074 date "2020-12-01" @default.
- W2999536074 modified "2023-10-13" @default.
- W2999536074 title "Transferred CNN Based on Tensor for Hyperspectral Anomaly Detection" @default.
- W2999536074 cites W1521436688 @default.
- W2999536074 cites W1990895816 @default.
- W2999536074 cites W2004491663 @default.
- W2999536074 cites W2029316659 @default.
- W2999536074 cites W2041403224 @default.
- W2999536074 cites W2047870694 @default.
- W2999536074 cites W2048625826 @default.
- W2999536074 cites W2086506050 @default.
- W2999536074 cites W2090424610 @default.
- W2999536074 cites W2124463804 @default.
- W2999536074 cites W2145096794 @default.
- W2999536074 cites W2163129097 @default.
- W2999536074 cites W2179290474 @default.
- W2999536074 cites W2183325870 @default.
- W2999536074 cites W2288752886 @default.
- W2999536074 cites W2292987679 @default.
- W2999536074 cites W2314785379 @default.
- W2999536074 cites W2343117455 @default.
- W2999536074 cites W2345128667 @default.
- W2999536074 cites W2424277038 @default.
- W2999536074 cites W2500751094 @default.
- W2999536074 cites W2518897583 @default.
- W2999536074 cites W2519420704 @default.
- W2999536074 cites W2592141703 @default.
- W2999536074 cites W2782930397 @default.
- W2999536074 cites W2807662216 @default.
- W2999536074 cites W2901555355 @default.
- W2999536074 cites W2959891261 @default.
- W2999536074 doi "https://doi.org/10.1109/lgrs.2019.2962582" @default.
- W2999536074 hasPublicationYear "2020" @default.
- W2999536074 type Work @default.
- W2999536074 sameAs 2999536074 @default.
- W2999536074 citedByCount "19" @default.
- W2999536074 countsByYear W29995360742021 @default.
- W2999536074 countsByYear W29995360742022 @default.
- W2999536074 countsByYear W29995360742023 @default.
- W2999536074 crossrefType "journal-article" @default.
- W2999536074 hasAuthorship W2999536074A5026198068 @default.
- W2999536074 hasAuthorship W2999536074A5085798243 @default.
- W2999536074 hasConcept C113315163 @default.
- W2999536074 hasConcept C115961682 @default.
- W2999536074 hasConcept C124007464 @default.
- W2999536074 hasConcept C138885662 @default.
- W2999536074 hasConcept C153180895 @default.
- W2999536074 hasConcept C154945302 @default.
- W2999536074 hasConcept C155281189 @default.
- W2999536074 hasConcept C159078339 @default.
- W2999536074 hasConcept C202444582 @default.
- W2999536074 hasConcept C2776401178 @default.
- W2999536074 hasConcept C33923547 @default.
- W2999536074 hasConcept C41008148 @default.
- W2999536074 hasConcept C41895202 @default.
- W2999536074 hasConcept C45347329 @default.
- W2999536074 hasConcept C50644808 @default.
- W2999536074 hasConcept C51255310 @default.
- W2999536074 hasConcept C52622490 @default.
- W2999536074 hasConcept C74193536 @default.
- W2999536074 hasConcept C81363708 @default.
- W2999536074 hasConceptScore W2999536074C113315163 @default.
- W2999536074 hasConceptScore W2999536074C115961682 @default.
- W2999536074 hasConceptScore W2999536074C124007464 @default.
- W2999536074 hasConceptScore W2999536074C138885662 @default.
- W2999536074 hasConceptScore W2999536074C153180895 @default.
- W2999536074 hasConceptScore W2999536074C154945302 @default.
- W2999536074 hasConceptScore W2999536074C155281189 @default.
- W2999536074 hasConceptScore W2999536074C159078339 @default.
- W2999536074 hasConceptScore W2999536074C202444582 @default.
- W2999536074 hasConceptScore W2999536074C2776401178 @default.
- W2999536074 hasConceptScore W2999536074C33923547 @default.
- W2999536074 hasConceptScore W2999536074C41008148 @default.
- W2999536074 hasConceptScore W2999536074C41895202 @default.
- W2999536074 hasConceptScore W2999536074C45347329 @default.
- W2999536074 hasConceptScore W2999536074C50644808 @default.
- W2999536074 hasConceptScore W2999536074C51255310 @default.
- W2999536074 hasConceptScore W2999536074C52622490 @default.
- W2999536074 hasConceptScore W2999536074C74193536 @default.
- W2999536074 hasConceptScore W2999536074C81363708 @default.
- W2999536074 hasFunder F4320321001 @default.
- W2999536074 hasFunder F4320323085 @default.
- W2999536074 hasIssue "12" @default.
- W2999536074 hasLocation W29995360741 @default.
- W2999536074 hasOpenAccess W2999536074 @default.
- W2999536074 hasPrimaryLocation W29995360741 @default.
- W2999536074 hasRelatedWork W1887380982 @default.
- W2999536074 hasRelatedWork W1997494252 @default.
- W2999536074 hasRelatedWork W2015754241 @default.
- W2999536074 hasRelatedWork W2060415987 @default.
- W2999536074 hasRelatedWork W2385280846 @default.
- W2999536074 hasRelatedWork W2519254393 @default.
- W2999536074 hasRelatedWork W4226359038 @default.
- W2999536074 hasRelatedWork W4319065663 @default.