Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999571325> ?p ?o ?g. }
- W2999571325 endingPage "392" @default.
- W2999571325 startingPage "383" @default.
- W2999571325 abstract "Recently, deep learning has achieved huge successes in many important applications. In our previous studies, we proposed quadratic/second-order neurons and deep quadratic neural networks. In a quadratic neuron, the inner product of a vector of data and the corresponding weights in a conventional neuron is replaced with a quadratic function. The resultant quadratic neuron enjoys an enhanced expressive capability over the conventional neuron. However, how quadratic neurons improve the expressing capability of a deep quadratic network has not been studied up to now, preferably in relation to that of a conventional neural network. Specifically, we ask four basic questions in this paper: (1) for the one-hidden-layer network structure, is there any function that a quadratic network can approximate much more efficiently than a conventional network? (2) for the same multi-layer network structure, is there any function that can be expressed by a quadratic network but cannot be expressed with conventional neurons in the same structure? (3) Does a quadratic network give a new insight into universal approximation? (4) To approximate the same class of functions with the same error bound, could a quantized quadratic network have a lower number of weights than a quantized conventional network? Our main contributions are the four interconnected theorems shedding light upon these four questions and demonstrating the merits of a quadratic network in terms of expressive efficiency, unique capability, compact architecture and computational capacity respectively." @default.
- W2999571325 created "2020-01-23" @default.
- W2999571325 creator A5018677035 @default.
- W2999571325 creator A5030156276 @default.
- W2999571325 creator A5051700680 @default.
- W2999571325 date "2020-04-01" @default.
- W2999571325 modified "2023-09-25" @default.
- W2999571325 title "Universal approximation with quadratic deep networks" @default.
- W2999571325 cites W2033337358 @default.
- W2999571325 cites W2063783806 @default.
- W2999571325 cites W2068777106 @default.
- W2999571325 cites W2074381721 @default.
- W2999571325 cites W2089947415 @default.
- W2999571325 cites W2113442785 @default.
- W2999571325 cites W2137983211 @default.
- W2999571325 cites W2147768505 @default.
- W2999571325 cites W2166116275 @default.
- W2999571325 cites W2513671774 @default.
- W2999571325 cites W2520016695 @default.
- W2999571325 cites W2605622124 @default.
- W2999571325 cites W2753044865 @default.
- W2999571325 cites W2766447205 @default.
- W2999571325 cites W2777802649 @default.
- W2999571325 cites W2942086449 @default.
- W2999571325 cites W2964148965 @default.
- W2999571325 cites W3105432754 @default.
- W2999571325 cites W3105463048 @default.
- W2999571325 doi "https://doi.org/10.1016/j.neunet.2020.01.007" @default.
- W2999571325 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7076904" @default.
- W2999571325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32062373" @default.
- W2999571325 hasPublicationYear "2020" @default.
- W2999571325 type Work @default.
- W2999571325 sameAs 2999571325 @default.
- W2999571325 citedByCount "29" @default.
- W2999571325 countsByYear W29995713252018 @default.
- W2999571325 countsByYear W29995713252019 @default.
- W2999571325 countsByYear W29995713252020 @default.
- W2999571325 countsByYear W29995713252021 @default.
- W2999571325 countsByYear W29995713252022 @default.
- W2999571325 countsByYear W29995713252023 @default.
- W2999571325 crossrefType "journal-article" @default.
- W2999571325 hasAuthorship W2999571325A5018677035 @default.
- W2999571325 hasAuthorship W2999571325A5030156276 @default.
- W2999571325 hasAuthorship W2999571325A5051700680 @default.
- W2999571325 hasBestOaLocation W29995713252 @default.
- W2999571325 hasConcept C11413529 @default.
- W2999571325 hasConcept C114614502 @default.
- W2999571325 hasConcept C126255220 @default.
- W2999571325 hasConcept C129844170 @default.
- W2999571325 hasConcept C14036430 @default.
- W2999571325 hasConcept C152022596 @default.
- W2999571325 hasConcept C154945302 @default.
- W2999571325 hasConcept C166437778 @default.
- W2999571325 hasConcept C21440807 @default.
- W2999571325 hasConcept C2524010 @default.
- W2999571325 hasConcept C33923547 @default.
- W2999571325 hasConcept C41008148 @default.
- W2999571325 hasConcept C50644808 @default.
- W2999571325 hasConcept C78458016 @default.
- W2999571325 hasConcept C81845259 @default.
- W2999571325 hasConcept C86803240 @default.
- W2999571325 hasConcept C95136341 @default.
- W2999571325 hasConceptScore W2999571325C11413529 @default.
- W2999571325 hasConceptScore W2999571325C114614502 @default.
- W2999571325 hasConceptScore W2999571325C126255220 @default.
- W2999571325 hasConceptScore W2999571325C129844170 @default.
- W2999571325 hasConceptScore W2999571325C14036430 @default.
- W2999571325 hasConceptScore W2999571325C152022596 @default.
- W2999571325 hasConceptScore W2999571325C154945302 @default.
- W2999571325 hasConceptScore W2999571325C166437778 @default.
- W2999571325 hasConceptScore W2999571325C21440807 @default.
- W2999571325 hasConceptScore W2999571325C2524010 @default.
- W2999571325 hasConceptScore W2999571325C33923547 @default.
- W2999571325 hasConceptScore W2999571325C41008148 @default.
- W2999571325 hasConceptScore W2999571325C50644808 @default.
- W2999571325 hasConceptScore W2999571325C78458016 @default.
- W2999571325 hasConceptScore W2999571325C81845259 @default.
- W2999571325 hasConceptScore W2999571325C86803240 @default.
- W2999571325 hasConceptScore W2999571325C95136341 @default.
- W2999571325 hasLocation W29995713251 @default.
- W2999571325 hasLocation W29995713252 @default.
- W2999571325 hasLocation W29995713253 @default.
- W2999571325 hasOpenAccess W2999571325 @default.
- W2999571325 hasPrimaryLocation W29995713251 @default.
- W2999571325 hasRelatedWork W1559857115 @default.
- W2999571325 hasRelatedWork W1573085629 @default.
- W2999571325 hasRelatedWork W1990134970 @default.
- W2999571325 hasRelatedWork W2022386417 @default.
- W2999571325 hasRelatedWork W2047406140 @default.
- W2999571325 hasRelatedWork W2052492715 @default.
- W2999571325 hasRelatedWork W2352060178 @default.
- W2999571325 hasRelatedWork W2352090799 @default.
- W2999571325 hasRelatedWork W3006239198 @default.
- W2999571325 hasRelatedWork W4255530064 @default.
- W2999571325 hasVolume "124" @default.
- W2999571325 isParatext "false" @default.
- W2999571325 isRetracted "false" @default.
- W2999571325 magId "2999571325" @default.