Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999573048> ?p ?o ?g. }
- W2999573048 endingPage "KS61" @default.
- W2999573048 startingPage "KS51" @default.
- W2999573048 abstract "Microseismic monitoring is an indispensable technique in characterizing the physical processes that are caused by extraction or injection of fluids during the hydraulic fracturing process. Microseismic data, however, are often contaminated with strong random noise and have a low signal-to-noise ratio (S/N). The low S/N in most microseismic data severely affects the accuracy and reliability of the source localization and source-mechanism inversion results. We have developed a new denoising framework to enhance the quality of microseismic data. We use the method of adaptive sparse dictionaries to learn the waveform features of the microseismic data by iteratively updating the dictionary atoms and sparse coefficients in an unsupervised way. Unlike most existing dictionary learning applications in the seismic community, we learn the features from 1D microseismic data, thereby to learn 1D features of the waveforms. We develop a sparse dictionary learning framework and then prepare the training patches and implement the algorithm to obtain favorable denoising performance. We use extensive numerical examples and real microseismic data examples to demonstrate the validity of our method. Results show that the features of microseismic waveforms can be learned to distinguish signal patches and noise patches even from a single channel of microseismic data. However, more training data can make the learned features smoother and better at representing useful signal components." @default.
- W2999573048 created "2020-01-23" @default.
- W2999573048 creator A5007733194 @default.
- W2999573048 creator A5019972279 @default.
- W2999573048 creator A5055720455 @default.
- W2999573048 creator A5074415234 @default.
- W2999573048 creator A5089366118 @default.
- W2999573048 date "2020-05-01" @default.
- W2999573048 modified "2023-10-04" @default.
- W2999573048 title "Self-training and learning the waveform features of microseismic data using an adaptive dictionary" @default.
- W2999573048 cites W1591735605 @default.
- W2999573048 cites W2007938736 @default.
- W2999573048 cites W2020205028 @default.
- W2999573048 cites W2039917344 @default.
- W2999573048 cites W2044395496 @default.
- W2999573048 cites W2055798239 @default.
- W2999573048 cites W2105140348 @default.
- W2999573048 cites W2115528090 @default.
- W2999573048 cites W2127271355 @default.
- W2999573048 cites W2141953966 @default.
- W2999573048 cites W2149639076 @default.
- W2999573048 cites W2182747765 @default.
- W2999573048 cites W2186316592 @default.
- W2999573048 cites W2579302569 @default.
- W2999573048 cites W2604249967 @default.
- W2999573048 cites W2612643985 @default.
- W2999573048 cites W2702787849 @default.
- W2999573048 cites W2741984561 @default.
- W2999573048 cites W2744272590 @default.
- W2999573048 cites W2754169345 @default.
- W2999573048 cites W2763474475 @default.
- W2999573048 cites W2770601028 @default.
- W2999573048 cites W2792375645 @default.
- W2999573048 cites W2796445688 @default.
- W2999573048 cites W2903512683 @default.
- W2999573048 cites W2910355481 @default.
- W2999573048 cites W2945294778 @default.
- W2999573048 cites W2975778935 @default.
- W2999573048 cites W4233353631 @default.
- W2999573048 cites W4244300305 @default.
- W2999573048 doi "https://doi.org/10.1190/geo2019-0213.1" @default.
- W2999573048 hasPublicationYear "2020" @default.
- W2999573048 type Work @default.
- W2999573048 sameAs 2999573048 @default.
- W2999573048 citedByCount "23" @default.
- W2999573048 countsByYear W29995730482020 @default.
- W2999573048 countsByYear W29995730482021 @default.
- W2999573048 countsByYear W29995730482022 @default.
- W2999573048 countsByYear W29995730482023 @default.
- W2999573048 crossrefType "journal-article" @default.
- W2999573048 hasAuthorship W2999573048A5007733194 @default.
- W2999573048 hasAuthorship W2999573048A5019972279 @default.
- W2999573048 hasAuthorship W2999573048A5055720455 @default.
- W2999573048 hasAuthorship W2999573048A5074415234 @default.
- W2999573048 hasAuthorship W2999573048A5089366118 @default.
- W2999573048 hasConcept C115961682 @default.
- W2999573048 hasConcept C124101348 @default.
- W2999573048 hasConcept C127313418 @default.
- W2999573048 hasConcept C153180895 @default.
- W2999573048 hasConcept C154945302 @default.
- W2999573048 hasConcept C163294075 @default.
- W2999573048 hasConcept C165205528 @default.
- W2999573048 hasConcept C197424946 @default.
- W2999573048 hasConcept C199360897 @default.
- W2999573048 hasConcept C2779843651 @default.
- W2999573048 hasConcept C41008148 @default.
- W2999573048 hasConcept C554190296 @default.
- W2999573048 hasConcept C7266685 @default.
- W2999573048 hasConcept C76155785 @default.
- W2999573048 hasConcept C99498987 @default.
- W2999573048 hasConceptScore W2999573048C115961682 @default.
- W2999573048 hasConceptScore W2999573048C124101348 @default.
- W2999573048 hasConceptScore W2999573048C127313418 @default.
- W2999573048 hasConceptScore W2999573048C153180895 @default.
- W2999573048 hasConceptScore W2999573048C154945302 @default.
- W2999573048 hasConceptScore W2999573048C163294075 @default.
- W2999573048 hasConceptScore W2999573048C165205528 @default.
- W2999573048 hasConceptScore W2999573048C197424946 @default.
- W2999573048 hasConceptScore W2999573048C199360897 @default.
- W2999573048 hasConceptScore W2999573048C2779843651 @default.
- W2999573048 hasConceptScore W2999573048C41008148 @default.
- W2999573048 hasConceptScore W2999573048C554190296 @default.
- W2999573048 hasConceptScore W2999573048C7266685 @default.
- W2999573048 hasConceptScore W2999573048C76155785 @default.
- W2999573048 hasConceptScore W2999573048C99498987 @default.
- W2999573048 hasIssue "3" @default.
- W2999573048 hasLocation W29995730481 @default.
- W2999573048 hasOpenAccess W2999573048 @default.
- W2999573048 hasPrimaryLocation W29995730481 @default.
- W2999573048 hasRelatedWork W1977846611 @default.
- W2999573048 hasRelatedWork W2021786311 @default.
- W2999573048 hasRelatedWork W2335515558 @default.
- W2999573048 hasRelatedWork W2499644479 @default.
- W2999573048 hasRelatedWork W2892299409 @default.
- W2999573048 hasRelatedWork W2915132025 @default.
- W2999573048 hasRelatedWork W3158298132 @default.
- W2999573048 hasRelatedWork W4220922349 @default.
- W2999573048 hasRelatedWork W4223642339 @default.