Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999573949> ?p ?o ?g. }
- W2999573949 endingPage "9" @default.
- W2999573949 startingPage "1" @default.
- W2999573949 abstract "The incidence of superficial organ diseases has increased rapidly in recent years. New methods such as computer-aided diagnosis (CAD) are widely used to improve diagnostic efficiency. Convolutional neural networks (CNNs) are one of the most popular methods, and further improvements of CNNs should be considered. This paper aims to develop a multiorgan CAD system based on CNNs for classifying both thyroid and breast nodules and investigate the impact of this system on the diagnostic efficiency of different preprocessing approaches.The training and validation sets comprised randomly selected thyroid and breast nodule images. The data were subgrouped into 4 models according to the different preprocessing methods (depending on segmentation and the classification method). A prospective data set was selected to verify the clinical value of the CNN model by comparison with ultrasound guidelines. Diagnostic efficiency was assessed based on receiver operating characteristic (ROC) curves.Among the 4 models, the CNN model using segmented images for classification achieved the best result. For the validation set, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and area under the curve (AUC) of our CNN model were 84.9%, 69.0%, 62.5%, 88.2%, 75.0%, and 0.769, respectively. There was no statistically significant difference between the CNN model and the ultrasound guidelines. The combination of the two methods achieved superior diagnostic efficiency compared with their use individually.The study demonstrates the probability, feasibility, and clinical value of CAD in the ultrasound diagnosis of multiple organs. The use of segmented images and classification by the nature of the disease are the main factors responsible for the improvement of the CNN model. Moreover, the combination of the CNN model and ultrasound guidelines results in better diagnostic performance, which will contribute to the improved diagnostic efficiency of CAD systems." @default.
- W2999573949 created "2020-01-23" @default.
- W2999573949 creator A5012901475 @default.
- W2999573949 creator A5055206121 @default.
- W2999573949 creator A5082295616 @default.
- W2999573949 creator A5084819070 @default.
- W2999573949 date "2020-01-10" @default.
- W2999573949 modified "2023-10-17" @default.
- W2999573949 title "Convolutional Neural Network for Breast and Thyroid Nodules Diagnosis in Ultrasound Imaging" @default.
- W2999573949 cites W1548789258 @default.
- W2999573949 cites W1942602300 @default.
- W2999573949 cites W2003224875 @default.
- W2999573949 cites W2015635528 @default.
- W2999573949 cites W2032492895 @default.
- W2999573949 cites W2057386941 @default.
- W2999573949 cites W2074000159 @default.
- W2999573949 cites W2091415346 @default.
- W2999573949 cites W2105329556 @default.
- W2999573949 cites W2107410750 @default.
- W2999573949 cites W2135015718 @default.
- W2999573949 cites W2157647765 @default.
- W2999573949 cites W2224991823 @default.
- W2999573949 cites W2281283198 @default.
- W2999573949 cites W2345811922 @default.
- W2999573949 cites W2518674481 @default.
- W2999573949 cites W2550741128 @default.
- W2999573949 cites W2586932530 @default.
- W2999573949 cites W2598799153 @default.
- W2999573949 cites W2603963723 @default.
- W2999573949 cites W2604675678 @default.
- W2999573949 cites W2735666957 @default.
- W2999573949 cites W2778114718 @default.
- W2999573949 cites W2786886463 @default.
- W2999573949 cites W2788136656 @default.
- W2999573949 cites W2788633781 @default.
- W2999573949 cites W2980877892 @default.
- W2999573949 doi "https://doi.org/10.1155/2020/1763803" @default.
- W2999573949 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7199615" @default.
- W2999573949 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32420322" @default.
- W2999573949 hasPublicationYear "2020" @default.
- W2999573949 type Work @default.
- W2999573949 sameAs 2999573949 @default.
- W2999573949 citedByCount "27" @default.
- W2999573949 countsByYear W29995739492021 @default.
- W2999573949 countsByYear W29995739492022 @default.
- W2999573949 countsByYear W29995739492023 @default.
- W2999573949 crossrefType "journal-article" @default.
- W2999573949 hasAuthorship W2999573949A5012901475 @default.
- W2999573949 hasAuthorship W2999573949A5055206121 @default.
- W2999573949 hasAuthorship W2999573949A5082295616 @default.
- W2999573949 hasAuthorship W2999573949A5084819070 @default.
- W2999573949 hasBestOaLocation W29995739491 @default.
- W2999573949 hasConcept C119857082 @default.
- W2999573949 hasConcept C121608353 @default.
- W2999573949 hasConcept C126322002 @default.
- W2999573949 hasConcept C126838900 @default.
- W2999573949 hasConcept C127413603 @default.
- W2999573949 hasConcept C143753070 @default.
- W2999573949 hasConcept C153180895 @default.
- W2999573949 hasConcept C154945302 @default.
- W2999573949 hasConcept C194789388 @default.
- W2999573949 hasConcept C199639397 @default.
- W2999573949 hasConcept C2777423100 @default.
- W2999573949 hasConcept C2779022025 @default.
- W2999573949 hasConcept C2779549770 @default.
- W2999573949 hasConcept C2780472235 @default.
- W2999573949 hasConcept C34736171 @default.
- W2999573949 hasConcept C41008148 @default.
- W2999573949 hasConcept C526584372 @default.
- W2999573949 hasConcept C530470458 @default.
- W2999573949 hasConcept C58471807 @default.
- W2999573949 hasConcept C71924100 @default.
- W2999573949 hasConcept C81363708 @default.
- W2999573949 hasConcept C89600930 @default.
- W2999573949 hasConceptScore W2999573949C119857082 @default.
- W2999573949 hasConceptScore W2999573949C121608353 @default.
- W2999573949 hasConceptScore W2999573949C126322002 @default.
- W2999573949 hasConceptScore W2999573949C126838900 @default.
- W2999573949 hasConceptScore W2999573949C127413603 @default.
- W2999573949 hasConceptScore W2999573949C143753070 @default.
- W2999573949 hasConceptScore W2999573949C153180895 @default.
- W2999573949 hasConceptScore W2999573949C154945302 @default.
- W2999573949 hasConceptScore W2999573949C194789388 @default.
- W2999573949 hasConceptScore W2999573949C199639397 @default.
- W2999573949 hasConceptScore W2999573949C2777423100 @default.
- W2999573949 hasConceptScore W2999573949C2779022025 @default.
- W2999573949 hasConceptScore W2999573949C2779549770 @default.
- W2999573949 hasConceptScore W2999573949C2780472235 @default.
- W2999573949 hasConceptScore W2999573949C34736171 @default.
- W2999573949 hasConceptScore W2999573949C41008148 @default.
- W2999573949 hasConceptScore W2999573949C526584372 @default.
- W2999573949 hasConceptScore W2999573949C530470458 @default.
- W2999573949 hasConceptScore W2999573949C58471807 @default.
- W2999573949 hasConceptScore W2999573949C71924100 @default.
- W2999573949 hasConceptScore W2999573949C81363708 @default.
- W2999573949 hasConceptScore W2999573949C89600930 @default.
- W2999573949 hasFunder F4320321001 @default.
- W2999573949 hasLocation W29995739491 @default.