Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999586291> ?p ?o ?g. }
- W2999586291 endingPage "983" @default.
- W2999586291 startingPage "975" @default.
- W2999586291 abstract "Abstract In practical application, there are a large amount of imbalanced data containing only a small number of labeled data. In order to improve the classification performance of this kind of problem, this paper proposes a semi-supervised learning algorithm based on mixed sampling for imbalanced data classification (S2MAID), which combines semi-supervised learning, over sampling, under sampling and ensemble learning. Firstly, a kind of under sampling algorithm UD-density is provided to select samples with high information content from majority class set for semi-supervised learning. Secondly, a safe supervised-learning method is used to mark unlabeled sample and expand the labeled sample. Thirdly, a kind of over sampling algorithm SMOTE-density is provided to make the imbalanced data set become balance set. Fourthly, an ensemble technology is used to generate a strong classifier. Finally, the experiment is carried out on imbalanced data with containing only a few labeled samples, and semi-supervised learning process is simulated. The proposed S2MAID is verified and the experimental result shows that the proposed S2MAID has a better classification performance." @default.
- W2999586291 created "2020-01-23" @default.
- W2999586291 creator A5041853363 @default.
- W2999586291 creator A5067131002 @default.
- W2999586291 date "2019-01-01" @default.
- W2999586291 modified "2023-10-17" @default.
- W2999586291 title "Semi-supervised Classification Based Mixed Sampling for Imbalanced Data" @default.
- W2999586291 cites W1964602337 @default.
- W2999586291 cites W1966949944 @default.
- W2999586291 cites W1970387193 @default.
- W2999586291 cites W1976035027 @default.
- W2999586291 cites W1990975532 @default.
- W2999586291 cites W1996932677 @default.
- W2999586291 cites W2026316367 @default.
- W2999586291 cites W2048679005 @default.
- W2999586291 cites W2061119986 @default.
- W2999586291 cites W2087240369 @default.
- W2999586291 cites W2087787741 @default.
- W2999586291 cites W2089514923 @default.
- W2999586291 cites W2090093112 @default.
- W2999586291 cites W2091007025 @default.
- W2999586291 cites W2096942889 @default.
- W2999586291 cites W2112890163 @default.
- W2999586291 cites W2118978333 @default.
- W2999586291 cites W2119498311 @default.
- W2999586291 cites W2133556223 @default.
- W2999586291 cites W2148143831 @default.
- W2999586291 cites W2168025622 @default.
- W2999586291 cites W2169937061 @default.
- W2999586291 cites W2170413589 @default.
- W2999586291 cites W2332761596 @default.
- W2999586291 cites W2345578832 @default.
- W2999586291 cites W2526017544 @default.
- W2999586291 cites W2560327106 @default.
- W2999586291 cites W2572767459 @default.
- W2999586291 cites W2616803684 @default.
- W2999586291 cites W2733470015 @default.
- W2999586291 cites W2789515803 @default.
- W2999586291 cites W2789717136 @default.
- W2999586291 cites W2790531675 @default.
- W2999586291 cites W2795502097 @default.
- W2999586291 cites W2884226717 @default.
- W2999586291 cites W2964050365 @default.
- W2999586291 cites W3103377809 @default.
- W2999586291 doi "https://doi.org/10.1515/phys-2019-0103" @default.
- W2999586291 hasPublicationYear "2019" @default.
- W2999586291 type Work @default.
- W2999586291 sameAs 2999586291 @default.
- W2999586291 citedByCount "5" @default.
- W2999586291 countsByYear W29995862912021 @default.
- W2999586291 countsByYear W29995862912022 @default.
- W2999586291 countsByYear W29995862912023 @default.
- W2999586291 crossrefType "journal-article" @default.
- W2999586291 hasAuthorship W2999586291A5041853363 @default.
- W2999586291 hasAuthorship W2999586291A5067131002 @default.
- W2999586291 hasBestOaLocation W29995862911 @default.
- W2999586291 hasConcept C106131492 @default.
- W2999586291 hasConcept C119857082 @default.
- W2999586291 hasConcept C124101348 @default.
- W2999586291 hasConcept C136389625 @default.
- W2999586291 hasConcept C140779682 @default.
- W2999586291 hasConcept C153180895 @default.
- W2999586291 hasConcept C154945302 @default.
- W2999586291 hasConcept C177264268 @default.
- W2999586291 hasConcept C185592680 @default.
- W2999586291 hasConcept C197323446 @default.
- W2999586291 hasConcept C198531522 @default.
- W2999586291 hasConcept C199360897 @default.
- W2999586291 hasConcept C2776145971 @default.
- W2999586291 hasConcept C2776257435 @default.
- W2999586291 hasConcept C31258907 @default.
- W2999586291 hasConcept C31972630 @default.
- W2999586291 hasConcept C41008148 @default.
- W2999586291 hasConcept C43617362 @default.
- W2999586291 hasConcept C45942800 @default.
- W2999586291 hasConcept C50644808 @default.
- W2999586291 hasConcept C58489278 @default.
- W2999586291 hasConcept C58973888 @default.
- W2999586291 hasConcept C95623464 @default.
- W2999586291 hasConceptScore W2999586291C106131492 @default.
- W2999586291 hasConceptScore W2999586291C119857082 @default.
- W2999586291 hasConceptScore W2999586291C124101348 @default.
- W2999586291 hasConceptScore W2999586291C136389625 @default.
- W2999586291 hasConceptScore W2999586291C140779682 @default.
- W2999586291 hasConceptScore W2999586291C153180895 @default.
- W2999586291 hasConceptScore W2999586291C154945302 @default.
- W2999586291 hasConceptScore W2999586291C177264268 @default.
- W2999586291 hasConceptScore W2999586291C185592680 @default.
- W2999586291 hasConceptScore W2999586291C197323446 @default.
- W2999586291 hasConceptScore W2999586291C198531522 @default.
- W2999586291 hasConceptScore W2999586291C199360897 @default.
- W2999586291 hasConceptScore W2999586291C2776145971 @default.
- W2999586291 hasConceptScore W2999586291C2776257435 @default.
- W2999586291 hasConceptScore W2999586291C31258907 @default.
- W2999586291 hasConceptScore W2999586291C31972630 @default.
- W2999586291 hasConceptScore W2999586291C41008148 @default.
- W2999586291 hasConceptScore W2999586291C43617362 @default.
- W2999586291 hasConceptScore W2999586291C45942800 @default.